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1 Supplementary Figures and Tables 

1.1 Supplementary Tables 

Supplementary Table 1. Echocardiographic imaging variables of post-myocardial infarction patients in 

CDCS study 

Supplementary Table 2. Partial correlations associated with the edges connecting at least one of the 

echocardiographic imaging variables and clinical biomarkers in the CDCS cohort. 

Supplementary Table 3. Hypothesis testing (two-sample t-test) of data features between MACE and event-

free patients and between the HF subgroup and event-free patients in the CDCS cohort.  

Supplementary Table 4. MACE signature derived by the supervised analysis module of iOmicsPASS+ using 

the CDCS data, with edge-specific d-scores of the two groups (MACE and event-free).  

Supplementary Table 5. Biological function enrichment analysis of the proteins in the MACE signature, 

accounting for tissue-specific mRNA expression.   

Supplementary Table 6. HF signature derived by the supervised analysis module of iOmicsPASS+ using the 

CDCS data, with edge-specific d-scores of the two groups (HF and event-free).  

Supplementary Table 7. Biological function enrichment analysis of the proteins in the HF signature, 

accounting for tissue-specific mRNA expression.   

Supplementary Table 8. Summary table of tissue-specific over-expression of individual genes encoding the 

plasma proteins at their respective, potential sites of origin.  

Supplementary Table 9. Echocardiographic imaging variables of post-myocardial infarction patients in 

IMMACULATE study 

Supplementary Table 10. Statistical summary of the risk of MACE and HF adjusted for medication use after 

hospital discharge in CDCS and IMMACULATE cohort using Cox proportional hazards model.  
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1.2 Supplementary Figures 

 

Supplementary Figure 1. Data features are standardized and outliers are removed prior to integration of multi-

modal data sets. In CDCS, 1,289 proteins from SOMALOGIC and 376 lipids from targeted MS were integrated 

with 19 cardiac imaging variables and 6 clinical biomarkers through this network inference.   
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Supplementary Figure 2. The prognostic value of NT-proBNP for MACE and HF in the two cohorts, 

measured by the ROC analysis as well as the separation of risk profiles via tertile-based stratification.   
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Supplementary Figure 3. The comparison of the unadjusted and adjusted log hazard ratios to evaluate the effect 

of medication use during hospital stay to baseline for MACE (top panel) and incident HF (bottom panel) in 

CDCS and IMMACULATE study. In CDCS, the log hazard ratios are adjusted for the use of beta-blockers, 

clopidogrel, calcium channel antagonist, long-acting nitrates, ACE inhibitors, aspirin, diuretics, statin and 

warfarin. For IMMACULATE, the log hazard ratios are adjusted for the use of beta-blockers, ACE inhibitors 

and angiotensin receptor blockers (ARB). The markers from the identified network signatures are colored in 

blue (protein), green (lipid), salmon (clinical biomarker) and purple (echo imaging). Markers that are not a part 

of the signature are shown in grey. 
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2 Supplementary Information 

2.1 The Coronary Disease Cohort Study (CDCS) 

The CDCS cohort consists of 2,140 patients admitted into two tertiary hospitals (Christchurch Hospital and 

Auckland City Hospital) in New Zealand (NZ) for an ACS event, recruited from 2002 and 2009. They were 

invited to return to the hospital one month after discharge for baseline measurements. Patients were excluded 

from the study if they had a severe comorbidity that limited their life expectancy to less than 3 years.  Clinical 

measurements, blood sample collection, and echocardiogram were all obtained at baseline (30 days from 

discharge) and 4 months, 6 months and 12 months after discharge. These individuals were followed up until the 

end of the study on 31st January 2012, death or lost-to-follow-up. Subsequent clinical events and mortality 

information were obtained from the NZ Nation Health Information System. The study was approved by the New 

Zealand Multi-region Ethics Committee (CTY/02/02/018) and all participants had provided a written informed 

consent prior to their participation. More information on the study can be found in Prickett et al (1).  

Out of these 2140 patients, a nested sub-cohort of 750 patients matched by age and gender was selected, 

and both aptamer-based SOMALOGIC protein assay and multiple reaction monitoring (MRM)-based 

lipidomics were used to measure proteins and lipids, respectively. Among these, 250 patients were readmitted 

for HF after their hospital discharge, 250 patients were readmitted for myocardial infarction (MI) episode and 

250 patients were selected as controls without any recurrence of MI or incidence of heart failure hospitalization. 

The controls were further defined as free of adverse cardiac remodelling and any cardiovascular-related death 

over the follow-up period. They were selected by matching each HF patient to a MI patient and a control by age 

and gender using the MatchIT package in R (2).  

Following a quality control step for the molecular data, 741 patients were retained for network inference. 

For the supervised analysis using the iOmicsPASS method, 286 patients were removed due to the following 

exclusion criteria: 69 patients with cardiac remodelling, 81 patients with a medical history of heart failure, 97 

patients with history of stroke, 78 patients with a prior MI within the previous five years, and 19 patients with 

missing or unknown status to minimize possible error in the outcomes. A total of 464 patients was retained for 

predictive subnetwork identification for MACE and HF. Of those, 185 patients remained event-free, and 279 

patients had a secondary MACE, including 117 patients hospitalised for HF during follow-up.  

2.2.  The Improving Outcomes in Myocardial Infarction through Reversal of Cardiac Remodelling 

(IMMACULATE) registry  

The IMMACULATE registry consists of 859 patients who were admitted for MI into three local hospitals in 

Singapore (National University Hospital, Tan Tock Seng Hospital and Singapore General Hospital) from 2011 

to 2014. The patients were followed up for a median of 3.9 years (interquartile range IQR: 2.0-4.8 years). 
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Inclusion criteria were patients with a ST-segment elevation MI (STEMI) or non ST-segment elevation MI 

(NSTEMI) with ischemic chest pain or angina symptoms, concentrations of troponin exceeding 99th percentile 

URL and >50% occlusion of one or more coronary arteries based on angiography. Patients were excluded if 

they were anaemic (haemoglobin <8 g/dL in men and <7 g/dL in women), had severe renal impairment 

(estimated glomerular filtration rate, eGFR<15 ml/min/m2), were in cardiogenic shock not able to be weaned 

off inotropes or intra-aortic balloon pump, history of malignancy or other conditions limiting life expectancy 

diagnosed within the last 12 months.  

 Hospital records were used to capture readmissions due to a recurrent ACS event or other morbidity. 

Mortality data and primary cause of death was obtained from the National Registry of Death Office (NRDO). 

The study was approved by the institutional review board and the ethics committee at Singapore’s National 

Healthcare Group Domain Specific Review Board (DSRB 2013/00248 and 2013/00635). All participants 

provided written informed consent. 

We selected 200 IMMACULATE patients with clinical information and blood samples obtained at three 

time points: (i) within 24-72 hours of admission, (ii) 1 month after hospital discharge and (iii) 6 months after 

hospital discharge. At all three time points, plasma lipids and proteins were profiled and echocardiography 

undertaken. In the current report, the IMMACULATE study serves as validation and only measurements one 

month from hospital discharge post-MI, a temporal match with CDCS, have been used. Among these, 190 

subjects had all relevant biochemistry data for cardiac markers, proteomics, and lipidomics data. We further 

removed one patient with self-reported history of HF and six patients with history of stroke. However, we did 

not remove any patients with self-reported prior MI as the duration of prior MI to primary ACS event was 

unknown, as well as due to the constraint in the sample size. As a result, we recorded 152 patients who remained 

event-free and 38 patients with secondary 5-point MACE (15 4-point MACE and 23 HF). Here, we use 

IMMACULATE cohort as a validation for the evaluation of classification performance.  
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2.3.  SOMALOGIC Protein Assay 

Plasma samples (50 μL) collected 30 days after the index event were analysed using a Slow Off-rate Modified 

Aptamer (SOMAmer)–based capture array, “SOMAscan” (somaLogic, Inc, Boulder, CO, USA) (3). The 

abundance of a protein is reported using relative fluorescent units (RFU). A total of 1,305 human proteins were 

quantified (47% secreted proteins, 28% extracellular domains and 25% intracellular proteins). Details of the 

experimental methods and data analysis protocol are described in Chan et al (4). We note that the protein names 

in all diagrams and tables are given by the gene symbols of the encoding genes (all italicised), with the exception 

of NT-proBNP and cardiac troponin I, which are measured by both immunoassay and SOMALOGIC.     

2.4.  Lipidomics Assay 
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Samples were randomized into 10 analytical batches and batch quality control (BQC) samples were prepared by 

pooling equal plasma aliquots from all the samples. To assess analytical performances, one BQC sample was 

included for every ten study samples. Plasma (10 µL) was mixed with 190 µL 1-butanol/methanol (1:1, v/v), 

[BuMe], containing 4.5 µL of SPLASH™ Lipidomix® Mass Spec Standard I (#330707) and 4.5 µL Cer/Sph 

Mixture I (#LM6002) from Avanti Polar Lipids, Inc. The mixture was vortexed for 30 seconds, then sonicated 

for 30 min (ice was added into the sonication bath) and then centrifuged at 14,000 x g for 10 min at 10°C. The 

supernatant was transferred into autosampler vials for mass spectrometry. Extracted blanks were prepared using 

the same extraction protocol but without plasma samples. Technical quality control (TQC) samples were 

generated by pooling lipid extracts from the study samples and were used to monitor the analytical system 

performance.  

Analysis of plasma extracts was performed on an Agilent 6495A QQQ mass spectrometer coupled to an Agilent 

1290 Infinity-II UHPLC system and the MRM data acquired in positive ion mode were processed using the 

MRMkit tool (5). Peaks were integrated and the concentration data were further normalized by a time-trend and 

batch effect correction algorithm built in MRMkit. Only lipid species with the overall coefficient-of-variation 

smaller than 25% were included for the downstream analysis. We did not perform multi-point calibration to 

derive molar concentrations for this analysis since the current peak area values normalized by the internal 

standard provide the same quantitative information as the final absolute concentration values (linear transforms).  

2.5.  Quality control for proteomics and lipidomics data 

For both CDCS and IMMACULATE studies, only the measurements collected one month after hospital 

discharge (baseline) were used. For the CDCS study, a total of 376 unique lipids were used for the subsequent 

analysis. For the IMMACULATE study, a total of 418 lipid species were retained for validation analysis for 

relaxed criteria (CoV 50%). Internal standards were used to normalize the raw peak areas in the corresponding 

lipid class and concentrations were further normalized to the protein concentration in the original sample. Due 

to the methodology used in our study, we do not report absolute concentration values. Endogenous species were 

quantified using one standard per lipid class, hence our method can only deliver relative quantification results, 

which does not hamper testing of concentration differences between subjects within any given lipid species. For 

the proteome analysis in both studies, a standard SOMALOGIC 1.3k array was used. For the purpose of the 

analysis, we removed 5 proteins that were from human viruses (i.e. human papillomavirus) and samples that 

failed QC, resulting in 747 samples in CDCS and 197 in IMMACULATE study.   

2.6.  Biological function enrichment analysis incorporating tissue specific gene expression 
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The proteins included in the final predictive signatures were annotated in terms of their biological processes in 

Gene Ontology (GO) using gProfiler (6). Enrichment analysis was repeated with an additional filtering of query 

and background gene lists with regard to the minimal expression level (transcript per million reads, or TPM > 

5) in different tissues, heart (atrial appendage, left ventricle), arteries (aorta, coronary), kidneys (cortex, 

medulla), liver, lungs and skeletal muscle, in GTEx (7).  

2.7.  Software packages for data analysis and visualisation 

All analyses were carried out in R studio (R version 4.2.0) (8), using external R packages huge (9), gplots (10), 

mice (11), pROC (12), clusterProfiler (13), as well as iOmicsPASS+ presented in this paper. Visualization of 

networks were done using Cytoscape (version 3.8.2) (14). 

2.8.   iOmicsPASS+  

iOmicsPASS has been expanded and reimplemented as iOmicsPASS+ to allow for greater flexibility and 

generalizability to other types of omics data. First, the tool now allows for only one network and one data as 

input. If only one data (X) is used as input, then the network input is assumed to be one which links the features 

within the data. If more than one data is used as input (e.g. X, Y and Z), then a second network should be 

provided to link the features between the data in X to the data in Y. Data Z is used to normalize against matching 

features in data Y as in the original iOmicsPASS. 

 Second, the network input now allows for direction of association for the pair of interacting or co-

varying data features. The user can specify an additional column in the network file to include whether the 

association between the pair of features is positive (i.e. 1) or negative (i.e. -1). For the latter, the interaction 

scores are calculated as ratios (differences of two Z-scores), instead of the usual product (sum of two Z-scores). 

Within iOmicsPASS+, a sample correlation matrix is first calculated to determine if the direction of the 

association is consistent with the indicated direction by the user in the network. An edge with interaction score 

is created only if the sign of the correlation between two data features is consistent with the specified direction 

of association. Otherwise, if inconsistent, the pair of data features is not used as predictive features for the 

subsequent analysis. This enables the application to other omics data such as microRNAs and DNA methylation 

where the inhibition of gene expression occurs as a result of interaction with the target genes. 

Last, several new modules are added to the R package to facilitate users to build, install, create input 

parameter file and run the software. One of the most important module is a network inference module which 

estimates the best co-varying network between the different types of data, using an existing R-package “huge” 

(9), which carries out graphical LASSO (GLASSO) estimation. Within the module, we propose two different 

approaches for estimating the network: a supervised approach and a hybrid approach. In the supervised 

approach, the network is fully estimated from the precision matrix while the latter fuses a user-provided network 
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input based on prior knowledge with the estimated GLASSO-derived partial correlation network to produce a 

combined network. 

Another essential module in the R package is the prediction module that uses the iOmicsPASS results 

to assign new samples to the phenotypic groups based on the set of predictive signatures. The prediction module 

uses a discriminant model to assign each sample to the phenotype group with the highest discriminant score. In 

this module, the discriminant score is modified such that the prior probability incorporates other clinical 

information such as age, gender and BMI, that may influence the classification.  

The following sections will describe the network inference method in greater detail. 

2.8.1. Notation 

We first define a few notations for the subsequent sections. Consider a p-dimensional data, 𝑋 =

 (𝑋1, 𝑋2, … , 𝑋𝑝)
𝑇
, with mean vector µ and covariance matrix Σ𝑝×𝑝 = (𝜎𝑖𝑗)1≤𝑖,𝑗≤𝑝

.  

Let          

                                                          𝑋𝑖  =  (𝑋1𝑖 , 𝑋2𝑖 , … , 𝑋𝑛𝑖)
 ,  𝑖 = 1,… , 𝑝 

denote cross-sample observations of data feature 𝑖, where 𝑛 is the sample size of the data. The covariance matrix 

Σ is estimated by the sample covariance matrix 𝑆, where the (𝑖, 𝑗)𝑡ℎ entry represents the sample covariance of 

𝑋𝑖 and 𝑋𝑗 calculated as: 

𝒔𝒊𝒋 =
𝟏

𝒏−𝟏
∑ (𝒙𝒓𝒊 − 𝒙𝒊)(𝒙𝒓𝒋 − 𝒙𝒋)
𝒏
𝒓=𝟏    (1) 

Then, the precision matrix, Ω = (𝜔𝑖𝑗)1≤𝑖,𝑗≤𝑝
, is the inverse of the covariance matrix Σ and the (𝑖, 𝑗)𝑡ℎ entry 

describes the conditional dependency of 𝑋𝑖 and 𝑋𝑗 on all other (p-2) variables If 𝜔𝑖𝑗 = 0, then 𝑋𝑖 and 𝑋𝑗 are said 

to be conditionally independent given other variables present. If 𝜔𝑖𝑗 ≠ 0, then 𝑋𝑖 and 𝑋𝑗 are not conditionally 

independent and an edge can be form between the two in a network setting.  

2.8.2. Network inference module 

In this module, there are two proposed ways to create a pseudo network, linking one –omics to another. First, a 

supervised approach is completely driven by the estimates from the data. Second, a hybrid approach, which uses 

a mix of what is known as a prior and what is derived from the data by the supervised approach to produce a 
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combined network adjacency matrix. The subsections below provide a detailed description of the method in the 

two approaches. 

Supervised approach 

In the supervised approach, the input data is first standardized to unit standard deviation so that the sample 

covariance matrix and the sample correlation matrix are equivalent. Before the sample covariance matrix is 

computed, PCA is used to identify any outliers, defined to be more than 4 SDs away from the median of the first 

2 PCs derived from concatenating all the data into a single matrix. After filtering outliers, the sample covariance 

matrix 𝑆 is computed and corrected to the nearest PSD matrix if any of its eigenvalues are negative.  

To convert a matrix 𝐴 to the nearest PSD matrix, the approach by Nicholas J. Higham (15) is used: 

 𝐴𝑃𝑆𝐷 =
𝐵+𝐻

2
                                                (2) 

where 𝐵 =  
(𝐴+𝐴𝑇)

2
, 𝐻 = 𝑉Σ𝑉∗ and 𝐵 = 𝑊Σ𝑉∗. 

Here, 𝐻 is the symmetric polar factor of matrix 𝐵 where the polar decomposition of 𝐵 = 𝑈𝐻 (𝑈𝑇𝑈 =

𝐼 , 𝐻 = 𝐻𝑇 ≥ 0) . 𝑈 represents the unitary matrix and 𝐻 represents the hermitian matrix with PSD property and 

𝐵 = 𝑊Σ𝑉∗ using singular value decomposition (SVD) where 𝑉∗ = 𝑉𝑇 is the conjugate transpose of matrix 𝑉. 

To ensure that the corrected sample covariance matrix is not too far from the actual sample covariance 

matrix, the difference of the Frobenius norm, ‖𝐴‖𝐹 = √∑ 𝑎𝑖𝑗
2

𝑖,𝑗 , of the two matrices is reported in the software. 

Upon ensuring that the covariance matrix satisfies the PSD property, graphical LASSO in “huge” R package is 

implemented. The function requires a specification of lambda values to tune the L1-penalty term in the model 

and computes the corresponding penalized log-likelihoods at all lambda values. Model selection criteria, 

including AIC, BIC, e-BIC and cross-validation (CV), are used to help users to select an optimal regularization 

parameter 𝜆. Users may choose to specify their own vector of lambda values, otherwise, the software 

automatically generates a grid of 30 lambda values that is exponentially decreasing from 1 to 0.01: 

𝝀𝒈𝒓𝒊𝒅 = {𝝀𝟏, 𝝀𝟐, … , 𝝀𝟑𝟎} = 𝒆𝒙𝒑 {𝒍𝒐𝒈(𝟏) , 𝒍𝒐𝒈(𝟎. 𝟖𝟓𝟑) , … , 𝒍𝒐𝒈(𝟎. 𝟎𝟏)}               (3) 

 As a visual aid, a calibration plot is produced as a portable document format (PDF) with all four model 

selection criteria plotted against the vector of lambda values and users can recalibrate the lambda values and 

specify the model selection criterion to use to select the optimal regularization parameter.  
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After selecting an optimal regularization parameter 𝜆, the final GLASSO model is fitted and the 

estimated sparse inverse covariance matrix, Ω̂, is produced. The non-zero entries in this matrix are then converted 

into an edge-level network file to be used for the predictive analysis module. In addition, a partial correlation 

matrix is produced as output to provide a measure of confounding-free correlation for every pair of data features 

present in the network. For entries where the estimated inverse covariance matrix are shrunken to zero, the 

partial correlations remain as zero. The regularized partial correlation estimate between data features 𝑖 and 𝑗 is 

calculated as follows (16, 17):  

𝝆̃𝒊,𝒋 = 
−𝝎̂𝒊,𝒋

√𝝎̂𝒊,𝒊 𝝎̂𝒋,𝒋

                   (4) 

where 𝜔̂𝑖,𝑗 represents the (𝑖, 𝑗)𝑡ℎ entry in the estimated precision matrix, Ω̂. Then, heat maps illustrating the 

derivation of the sample covariance matrix to the estimated nearest PD covariance matrix, the estimated 

precision matrix and the corresponding adjacency matrix, are also produced in PDF files. 

Hybrid approach 

The hybrid approach is a semi-supervised approach where the prior knowledge of the network is combined with 

the estimated network by the supervised approach above into a single adjacency matrix. First, a network file is 

required as input as the prior (matrix 𝑷), then the supervised approach is carried out to obtain an estimated 

precision matrix (matrix 𝛀̂). Let us first define the following matrices: 

Prior network:                Matrix 𝑷𝑝×𝑝 = (𝑝𝑖𝑗) ∈ {−1, 0, 1} 

Estimated Precision network:  Matrix 𝛀̂𝑝×𝑝 = (𝜔̂𝑖,𝑗) ∈ [−1, 1] 

Sample covariance matrix:      Matrix 𝐒𝑝×𝑝 = (𝑠𝑖𝑗) ∈ [−1, 1]. 

Then we can create the following matrices: 

Matrix 𝑨: (𝑎𝑖𝑗) = {
 𝑠𝑖𝑔𝑛(𝜌̃𝑖,𝑗), 𝑖𝑓 𝑖 ≠ 𝑗 

     0,      𝑖𝑓 𝑖 = 𝑗,
 

               Matrix 𝑼: (𝑢𝑖𝑗) = 𝑠𝑖𝑔𝑛(𝑎𝑖𝑗 + 𝑝𝑖𝑗) 

where the entries in 𝑨 denote the sign of the partial correlation and the entries in 𝑼 represent the agreement in 

the signs of the non-zero entries in matrix 𝑨 and 𝑷. If the direction of association between feature i and j is 
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different in the prior from what is observed in the data (i.e. 𝑎𝑖𝑗 = 1, 𝑝𝑖𝑗 = −1 or 𝑎𝑖𝑗 = −1, 𝑝𝑖𝑗 = 1), the entry 

becomes zero.  

We extract the corresponding elementwise sample covariances in 𝑺 from the non-zero entries in matrix 

𝑼 by defining the Hadamard product of the two matrices to result in a non-negative matrix: 

𝑩 = 𝑼 ∘ 𝑺                        (5) 

A score matrix 𝑺∗, constrained between 0 to 1, can be computed as follows: 

Matrix 𝑺∗ = (𝑠𝑖𝑗
∗ )

{
 

 

 

 −
|𝑏𝑖𝑗
′ |

𝑏𝑚𝑎𝑥
       𝑖𝑓 𝑎𝑖𝑗 = 0, 𝑝𝑖𝑗 ≠ 0 

|𝑏𝑖𝑗
′ |

𝑏𝑚𝑎𝑥
             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

   (6) 

where 𝑩′ = (𝑏𝒊𝒋
′ ) =  𝑩𝑾𝑩𝑇 and 𝑏max  = 𝐦𝐚𝐱

𝒊,𝒋 
𝒃𝒊𝒋
′ . Here, the matrix 𝑾 =

1

2
(|𝑨 + 𝑷|) is a weight matrix taking 

values 0, 0.5 and 1. 

Lastly, a fused matrix 𝑭 is computed by: 

𝑭 = 𝑼 ∘ (𝑷 + 𝑺∗)                                 (7) 

adding to the prior if the edge is supported by what is estimated in Ω̂ (i.e. 𝜔̂𝑖,𝑗 ≠ 0), or penalizing the prior if 

the edge is present in the prior but not supported by the estimated network (i.e. 𝜔̂𝑖,𝑗 = 0).  

The final network is generated by forming an edge between feature 𝑖 and 𝑗 if the absolute value in (𝑖, 𝑗)𝑡ℎ 

entry of matrix 𝑭 is at least 0.5 and the direction of association of the edge is determined by the sign of the entry. 

Heatmaps illustrating the derivation of the sample covariance matrix to the estimated precision matrix, the input 

prior matrix, the product fused matrix and the corresponding adjacency matrix, are produced as a graphical 

output at the end. 

2.8.3. Model selection criterion 

To optimize the regularization parameter, 𝜆, for the penalised log-likelihood in GLASSO that controls for the 

sparsity of the precision matrix, several model selection criteria are used, including Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) (18, 19). However, when dealing with molecular data, we often 

encounter the curse of the high dimensionality where the size of the feature space, p, is much greater than the 

sample size, n. Hence, other criteria such as extended Bayesian information criterion (e-BIC) and K-fold CV 

may be more relevant. 
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Akaike Information Criterion, AIC 

AIC is a model selection criterion which penalises for overfitting of the model. The formula for AIC is: 

𝑨𝑰𝑪𝝀 = 𝟐𝒌 − 𝟐𝒍𝒏(𝓛)                               (8) 

where 𝑘 is the number of non-zero elements in the estimated precision matrix (Ω̂) and ℒ is the likelihood function 

without the penalty term. The best regularised parameter would correspond to the model which yield the lowest 

AIC value.  

Bayesian Information Criterion, BIC 

BIC is similar to AIC but penalizes more against over-parameterization. Due to the heavier penalty, linear 

regression models chosen by BIC tends to be the same or simpler models than the one chosen by AIC (20). The 

formula for BIC is: 

𝑩𝑰𝑪𝝀 = 𝒌 𝒍𝒏(𝒏) − 𝟐𝒍𝒏(𝓛)                     (9) 

where 𝑛 is the sample size. One underlying assumption of BIC is that the observations should be independent 

and identically distributed (21). Otherwise, the effective sample size, 𝑛, should be adjusted accordingly. Then, 

the regularized parameter should be picked with the model which has the lowest BIC value. 

Extended Bayesian Information Criterion, e-BIC 

Another recently proposed model selection criterion is the extended BIC, which came about after Foyel et al. 

and Chen et al. showed that AIC and BIC lose consistency when the feature space exceeds the sample size (i.e. 

𝑝 ≫ 𝑛). They propose a modification to the BIC formula as follows (19, 22): 

𝒆-𝑩𝑰𝑪𝝀 = 𝒌 𝒍𝒏(𝒏) − 𝟐𝒍𝒏(𝓛) + 𝟒𝒌𝜸 𝒍𝒐𝒈 (𝒑)                       (10) 

where 0 ≤ 𝛾 ≤ 1, with higher values yielding simpler and more parsimonious models. When 𝛾 = 0, the formula 

reverts to BIC and 𝛾 = 0.5 is suggested to be used for more consistent models (19). Similar to both AIC and 

BIC, the best regularized parameter corresponds to the model with the smallest e-BIC value. 

K-fold Cross-Validation, CV 

An alternative approach to estimate a regularized parameter is through learning directly from the data. In 2009, 

Fan et al. (23) proposed a K-fold cross validation score given by: 
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𝑪𝑽(𝝀) =  ∑ 𝒏𝒌 𝒍𝒐𝒈|𝜴̂−𝒌(𝝀)| − ∑ (𝒙(𝒊))
𝑻
𝜴̂−𝒌(𝝀)𝒊∈𝑻𝒌 𝒙(𝒊)𝑲

𝒌=𝟏                     (11) 

where log  |Ω| = log (det(Ω)), 𝑛𝑘 denotes the sample size and the set 𝑇𝑘 represents the test dataset in the 𝑘𝑡ℎ 

fold. Here, Ω̂−𝑘(𝜆) is the precision matrix estimated by using the training dataset, ⋃ 𝑇𝑗
 
𝑗≠𝑘 . Typically, a five-

fold cross-validation is recommended unless the sample size is too small and the regularised parameter is chosen 

at the value with the largest CV score. 

2.8.4. Software architecture 

iOmicsPASS+ is developed as an R package and the software is publicly available on GitHub 

(https://github.com/cssblab/iOmicsPASSplus). The package includes several modules to guide users to 

install, create an input parameter file containing the directory to which all the necessary files are and execute 

the program. The main software iOmicsPASS is still however coded in C++, and the functions enable users to 

execute the program from the R console, making it more user-friendly for individuals who are less comfortable 

with the command-line option. Below is the list of the functions included in the R package: 

----- INSTALL.iOmicsPASS() ----- 

This function calls system to build and compile the C++ program from the specified directory. In 

Windows, it creates a Windows executable (.exe) and in Mac OS, it creates a compiled binary in the /bin 

directory.  

----- NetDeconvolute() ----- 

This function carries out the network inference module by first standardizing the input data (i.e. 

inputDat) and combining multiple datasets into a single matrix. PCA is then carried out to screen for outlying 

samples that are more than 4 SDs away from the median of the first 2 PCs. After this, a supervised or hybrid 

approach is performed to estimate the adjacency matrix from the precision matrix or fused matrix, respectively, 

and to form the resulting network. 

----- createPrior() ----- 

This function fits a logistic model for a binary outcome or a multiple logistic model for a phenotypic 

group with more than 2 outcomes, adjusting for the user-specified clinical variables. User has to specify which 

variables are categorical and thus need to be converted to factor variables, otherwise they are treated as 

continuous variables. It then calculates the probability of every sample’s membership to each phenotypic 

outcome based on the fitted model. The probabilities calculated can be fed into run.iOmicsPASS() to be used as 

prior in the discriminant model for classification.  

https://github.com/cssblab/iOmicsPASSplus
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The data can also be split into a training and test dataset where the logistic model is fitted on the training 

dataset and the classification probabilities are calculated on the test dataset, by using the option 

“predict=TRUE”. The probabilities calculated can be fed into Predict.iOmicsPASS() function as prior 

probabilities used in the discriminant model to assign test samples to the phenotypic outcome groups in the 

training model. 

----- createInputParam() ----- 

This function creates an input parameter file needed to run iOmicsPASS with user’s specifications and 

the directory containing the required input files. 

----- run.iOmicsPASS() ----- 

This function calls system and execute the compiled binary, performing predictive analysis to identify 

network signatures that can separate the phenotypic groups of interest. The software may take some time if the 

dimensionality of the network is very large. It is advised to first run CV once to create a misclassification error 

plot by setting Cross.Validate=TRUE, then turn off the CV option and re-specify a suitable threshold that strikes 

a good balance between change in mean CV error and the number of selected edges. Its function also outputs 

the key model parameters required for prediction module below. 

----- Predict.iOmicsPASS() ----- 

This function requires the model parameters associated with the network signatures obtained from a training 

dataset. Using the same network features in the test data to compute a co-expression matrix, class probabilities 

are computed to assign each new sample to a phenotypic group. 
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