Unsupervised Principal Component Analysis (PCA) was performed in search for miRNA expression patterns that could be characteristic for SpA categories and/or Healthy individuals. PCA was run both with all differentially expressed miRNAs (regardless of the additional criteria described in the methodology section) as well as including differentially expressed miRNAs that were depicted in the manuscript's figure 1. The results of these analyses are shown below.

A. Considering all differentially expressed miRNAs:

PCA was performed and 3 major PC were extracted:

The clustering of some miRNAs within 3-dimensional space suggested the existence of similarities in miRNA expression patterns.

Next, the PC sores were extracted and analyzed for all the major PCs. PC scores were plotted to see whether there are any clear distribution patterns among AxSpA, perSpA and HC samples:

Although no clear grouping for AxSpA, perSpA and HC was observed, PC scores were further processed using multivariate analysis. Below, the results of multivariate analysis are presented (only the statistically significant results are shown). For this analysis samples were assigned as follows: perSpA = 1, AxSpA = 2, HC = 0.

For classical monocytes:

Multiple Comparisons								
				Mean	Std. Error	Sig.	95%	Confidence
				Difference			Interval	
Dependent		(I)SpA	(J)SpA	(I-J)			Lower	Upper
Variable							Bound	Bound
PC3 Score	LSD	0	1	67304*	0.319531	0.039	-1.31242	-0.03366
			2	-0.07008	0.300298	0.816	-0.67097	0.53082
		1	0	.67304*	0.319531	0.039	0.03366	1.31242
			2	.60297*	0.295668	0.046	0.01134	1.19460
		2	0	0.07008	0.300298	0.816	-0.53082	0.67097
			1	60297*	0.295668	0.046	-1.19460	-0.01134

No significant results for intermediate and non-classical monocytes were acquired.

As shown above expression patterns of miRNAs correlating the most with the PC3 in classical monocyte subset could potentially discriminate between perSpA vs axSpA and HC.

Based on the component loading values for PC3 (table below), these miRNAs would be:

miR-148b, miR-324-5p	, miR-130b, miR-17, miR-30b,	miR-1255, miR-302c,	miR-26a-3p, miR-548a-5p
----------------------	------------------------------	---------------------	-------------------------

Rotated Component Matrix ^a							
	Compon	Component					
	1	2	3				
miR-23a	0.989	0.020	0.075				
miR 34c	0.994	-0.060	-0.046				
miR 591	0.037	0.446	0.225				
miR 567	0.962	-0.063	-0.056				
miR 661	-0.053	0.847	-0.063				
miR 615	0.049	0.777	-0.143				
miR 630	-0.002	0.201	0.027				
miR 943	-0.026	-0.073	-0.070				
miR 617	-0.050	0.586	0.246				
miR 30b	0.432	-0.067	0.771				
miR 31	-0.076	-0.142	0.114				
miR 27b	-0.028	-0.029	0.011				
miR 1262	-0.032	-0.046	0.213				
miR 302c	-0.022	-0.013	0.461				
miR 17	0.040	0.015	0.880				
miR 159a	-0.025	0.312	-0.032				

miR 635	-0.076	0.463	0.151				
miR 548d-5p	-0.127	0.344	0.442				
miR 1300	-0.024	0.830	-0.011				
miR 1227	-0.075	0.351	0.118				
miR 383	-0.042	0.098	-0.032				
miR 30c	0.983	-0.081	0.116				
miR 370	-0.028	0.612	-0.117				
miR 1285	-0.101	0.500	-0.010				
miR 147b	0.043	0.776	-0.146				
miR 205	0.047	0.750	-0.045				
miR 642	-0.058	-0.081	0.038				
miR 299-3p	-0.035	-0.072	-0.039				
miR 1254	-0.079	0.402	-0.129				
miR 26a-2-3p	0.264	-0.080	0.457				
miR 548K	0.878	-0.061	0.086				
miR 30a-5p	0.994	-0.051	0.003				
miR 1255A	0.020	-0.046	0.708				
miR 378	0.994	-0.060	-0.046				
miR 190b	-0.007	0.093	0.044				
miR 148b	-0.016	0.091	0.945				
miR 1244	-0.091	0.533	0.529				
miR 324-5p	-0.029	0.078	0.944				
miR 130b	-0.077	0.067	0.921				
miR 548a	0.994	-0.057	-0.047				
miR 659	-0.053	0.618	-0.135				
miR 638	0.994	-0.048	-0.048				
miR 622	-0.037	-0.041	0.130				
miR 548c	0.994	-0.057	-0.046				
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. ^a							

Performing the hierarchical clustering of miRNA expression data one might realize that expression profiles of 8 out of 9 depicted miRNAs in classical monocyte subset are closely related (picture below)

Conclusion: combined expression patterns of miR-148b, miR-324-5p, miR-130b, miR-17, miR-30b, miR-1255, miR-302c, miR-26a-3p in classical monocytes could potentially discriminate between perSpA vs. axSpA and HC

B. Including differentially expressed miRNAs fulfilling inclusion criteria described in the M&M section of the manuscript:

The analysis was performed as described above. PCA was performed and 3 major PC were extracted:

Next, the PC sores were extracted and analyzed for all the major PCs. PC scores were plotted to see whether there are any clear distribution patterns among AxSpA, perSpA and HC samples:

Although no clear grouping for AxSpA, perSpA and HC was observed, PC scores were further processed using multivariate analysis. Below, the results of multivariate analysis are presented (only the statistically significant results are shown). For this analysis samples were assigned as follows: perSpA = 1, AxSpA = 2, HC = 0.

For classical monocytes:

Multiple Comparisons								
				Mean	Std.	Sig.	95% Confidence Interval	
Dependent		(I)SpA	(J)SpA	Difference	Error		Lower Bound	Upper Bound
Variable				(I-J)				
PC2 Score	LSD	0	1	85610 [*]	0.303223	0.006	-1.46285	-0.24936
			2	0.08356	0.284972	0.770	-0.48666	0.65379
		1	0	.85610 [*]	0.303223	0.006	0.24936	1.46285
			2	.93967*	0.280578	0.001	0.37823	1.50110
		2	0	-0.08356	0.284972	0.770	-0.65379	0.48666
			1	93967*	0.280578	0.001	-1.50110	-0.37823

For Intermediate monocytes:

				Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
Dependent Variable		(I)SpA	(J)SpA				Lower Bound	Upper Bound
PC3 Score	LSD	0	1	81212*	0.3143	0.0124	-1.4418	-0.1825
			2	63031*	0.2993	0.0397	-1.2299	-0.0308
		1	0	.81212*	0.3143	0.0124	0.1825	1.4418
			2	0.1818	0.3037	0.5518	-0.4266	0.7902
		2	0	.63031*	0.2993	0.0397	0.0308	1.2299
			1	-0.1818	0.3037	0.5518	-0.7902	0.4266

For Non-Classical monocytes:

				Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
Dependent Variable		(I)SpA	(J)SpA				Lower Bound	Upper Bound
PC1 Score	LSD	0	1	-0.0202	0.3273	0.9510	-0.6771	0.6367
			2	-,79861*	0.2935	0.0088	-1.3876	-0.2096
		1	0	0.0202	0.3273	0.9510	-0.6367	0.6771
			2	-,77842*	0.3241	0.0199	-1.4288	-0.1280
		2	0	,79861*	0.2935	0.0088	0.2096	1.3876
			1	,77842*	0.3241	0.0199	0.1280	1.4288
PC3 Score	LSD	0	1	-0.2796	0.3350	0.4078	-0.9519	0.3926
			2	-,75370 [*]	0.3004	0.0153	-1.3565	-0.1509
		1	0	0.2796	0.3350	0.4078	-0.3926	0.9519
			2	-0.4741	0.3317	0.1589	-1.1397	0.1915
		2	0	,7 <mark>5370[*]</mark>	0.3004	0.0153	0.1509	1.3565
			1	0.4741	0.3317	0.1589	-0.1915	1.1397

As shown above:

- For Classical monocytes expression patterns of miRNAs correlating the most with the PC2 could potentially discriminate between perSpA vs axSpA and HC.
- For Intermediate monocytes expression patterns of miRNAs correlating the most with the PC3 could potentially discriminate between HC vs axSpA and perSpA.

- For non-Classical monocytes expression patterns of miRNAs correlating the most with the PC1 could potentially discriminate between axSpA vs perSpA and HC. Also PC3 could discriminate between axSpA vs HC.

Based on the component loading values for corresponding PCs these miRNAs would be:

miR-23a and miR-630 - for classical monocytes

miR-1249 – for intermediate monocytes

miR-195 and miR-1291 for PC1 and miR-487b for PC3 – for non-classical monocytes

Performing the hierarchical clustering of miRNA expression data one might realize that expression profiles of **miR-23a and miR-630 in** classical monocyte subset are closely related (picture below). On the other hand in non-classical monocytes, expression profiles of **miR-195 and miR-1291 cluster together, whereas miR-487b** is separated from others miRNAs.

Concluding – based on Principal Component Analysis –

- a) expression patterns of **combined miR-23a and miR-630 in classical monocyte subset** could serve as a good discriminator between perSpA vs axSpA and HC.
- b) Expression pattern of **miR-1249** in intermediate monocyte subset could well discriminate between HC vs axSpA and perSpA.
- c) Combined expression patterns of **miR-195 and miR-1291 in non-classical monocyte subset** could serve as a good discriminator between axSpA vs perSpA and HC. On the other hand differential expression of **miR-487b** could be used to discriminate between axSpA vs HC.