
Supplementary material

Figure S1.

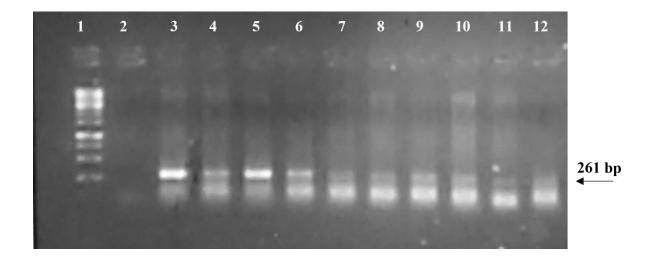

Figure S1. (**A**) Confirmation of successful cloning of *AtCIPK16* gene under *UBI1* promoter into *pTOOL37* vector. Restriction digestion with *Apa1 and Spe1* restriction enzymes gave two fragments of 10.1 Kb and 2.1 Kb in comparison with 1Kb plus DNA ladder (Fermentas). Lane 1 is 1Kb plus DNA Ladder and Lane 2 is digested clone. (**B**) Confirmation of successful cloning of *AtCIPK16* gene under *2XCaMV35S* promoter into *pMDC32* vector. Restriction digestion with *Sal1 and Spe1* restriction enzymes liberated two fragments of 9.4 Kb and 2.1 Kb in comparison with 1Kb DNA ladder (Fermentas). Lane 1 represents 1Kb DNA Ladder and Lane 2 and 3 is -ve control and Lane 4 represents digested clone.

Figure S2.

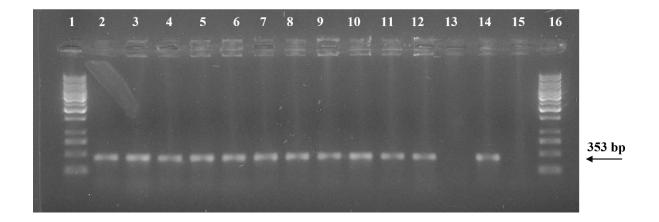

Figure S2. PCR verification of transformation. (**A**) PCR confirmation of *AGL1* strain of *Agrobacterium tumefaciens* transformed with both construct having *AtCIPK16* gene using *Hygromycin* primers as bacterial selection marker that gave band of 789 Kb. Lane 1 is 1Kb plus DNA Ladder and Lane 2 is -ve control and Lanes 3, is +ve control, 4 is transformed culture *of Agrobacterium tumefaciens* of construct 1 and 5 is transformed culture *of Agrobacterium tumefaciens* of construct 2. (**B**) PCR confirmation of transformed *Agrobacterium tumefaciens* strain *AGL1* using promoter (*2X CaMV35S*) and gene (*AtCIPK16*) specific primers that gave band size of 353 bp. Lane 1 is 1Kb DNA Ladder, Lane 2 and 3 are transformed culture of *Agrobacterium tumefaciens of construct 2*, and Lane 4 is -ve control (water). (**C**) PCR confirmation of transformed *Agrobacterium tumefaciens* strain *AGL1* using promoter (*UBI1*) and gene (*AtCIPK16*) specific primers that gave band size of 261bp. Lane 1 is 1 Kb Ladder and Lane 2 is -ve control (water) and Lanes 3 is positive control, 4, 5 and 6 are transformed culture of *Agrobacterium tumefaciens* of construct 1.

Figure S3.

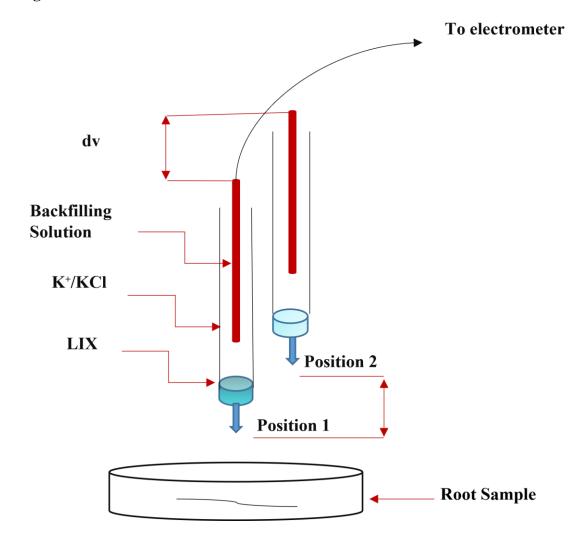

Figure S3. PCR confirmation of the over expressed wheat lines under *Ubiquitin 1. OE1*, *OE2*, *OE3* (*pTOOL 37*+ *UBI1*+ *AtCIPK16*) under *Ubiquitin1* promoter of size 261bp by gene specific primers. Lane 1 is1Kb DNA Ladder (Fermentas) lane 2 - ve, lane 3 + ve, lanes 4, 5, 6, 7, 8, 9, 10, 11 and 12 are transgenic lines.

Figure S4.

Figure S4. PCR confirmation of the over expressed wheat lines under 2XCaMV35S. OE5, OE6, OE7 (pMDC32 + 2XCaMV35S + AtCIPK16) under Cauliflower mosaic virus (2x CaMV35S of size 353bp by gene specific primers. Lane 1 is 1 Kb DNA Ladder (Fermentas) lane 2, 3, 4, 5, 6, 7, 8, 9,10,11 and 12 are transgenic lines, lane 13 is -ve, lane 14 is +ve, 15 is -ve and 16 is DNA ladder.

Figure S5.

Figure S5. Vibrating microelectrode configuration representation, measuring the K^+ ion fluxes by changing position and movement.

Microelectrode Preparation

Capillary glass tube was used to prepare K^+ LIX tube (GC-150-10; Harvard Apparatus, Kent, U.K), tip was pulled with electrode puller (L/M-3P-A, List Medical Electronics, Darmstadt, Germany) and salinized with tributylchlolorosilane (Fluka 90974). Salinized electrode was immobilized in microelectrode filling station and tip was broken to achieve diameter 2-3 μ m. In the filling station under microscope, the K^+ LIX tube was immobilized horizontally against blank microelectrode. K^+ backfilling solution was utilized to back-fill the electrode whereas, front was filled by contacting the electrode with the open tip of LIX-containing tube. Prepared microelectrode was stored in the BSM (basic salt medium). Three calibration solutions with different K^+ concentrations (over expected K^+ concentration) in the measuring solution were used to calibrate K^+ microelectrode. 1000, 5000, 10000 μ m calibration solutions, which must be higher in range than the K^+ in the BSM. Then AVC file would be created through CHART software automatically using required intercept parameters, correlation coefficients (must be above 0.999) and slope (above 50 mV) of K^+ microelectrode to be displayed.