"\' frontiers

Supplementary Material
In this appendix, we provide additional information on our small proof-of-concept benchmark.

1 SUPPLEMENTARY DATA BENCHMARKING INSTANCES

For the maximum weighted independent set (MWIS) problem, we consider randomly generated graphs
with different numbers of vertices (size k) and random vertex weights. We generate graphs with 5, 10, 15,
25, and 50 vertices and perform three tests for each size (“instances”). The adjacency matrix of the graph is
built by generating a binary upper triangular matrix with discrete uniform random number generator. All
entries on the main diagonal are set to O to delete loops. Vertex weights a; are generated with a discrete
uniform random generator with values ranging between 1 and 2k + 1.

For the QUBO formulation of the MWIS problem given in eq. (3), we set a penalty factor for each instance.
This is given by 2 max,cy weight(v), two times the maximum vertex weight of the instance: if we add to
the set two vertices v; and vy connected with an edge, the penalty 2 max, ¢y weight(v) is greater than or
equal to the contribution weight(vy) + weight(v2) to the objective function. Thus, infeasible solutions
are unlikely to occur. The complete set of instances can be found here: https://gitlab.itwm.
fraunhofer.de/halffmann/maximum-weighted-independent—-set—instances.

2 SUPPLEMENTARY TABLE BENCHMARKING RESULTS

size Gurobi D-Wave QPU
(no. graph vertices) | Sol. Time | Embed Time Time Sol. Sol. Freq.
20 0.0000 0.0000 0.1198 20 757

5 22 0.0000 0.0000 0.1161 22 10
17 0.0004 0.0000 0.1268 17 89
42 0.0244 0.0000 0.1432 42 384
10 50 0.0000 0.0000 0.1344 50 12

69 0.0000 0.0000 0.1262 69 625
78 0.0000 0.0161 0.1292 78 43

15 110 0.0191 0.0669 0.1517 110 351
75 0.0092 0.0000 0.1532 75 58
162 0.0116 0.4769 0.1259 162 34

25 184 0.0128 0.4035 0.1353 184 18
139 0.0031 0.4349 0.1360 139 14
481 0.0246 6.2639 0.1149 469 1

50 402 0.0351 6.8284 0.1167 387 1
512 0.0201 7.4317 0.1148 420 1

Table S1. Benchmarking results for MWIS problem.

Table [ST] shows the benchmarking results using Gurobi and D-Wave.

We use Gurobi 10.0 on classical hardware with Intel(R) Core(TM) 17-8665U CPU 1.90GHz, 16 GB
RAM, 250GB SSD with Windows 10 and Python 3.9. The MWIS problem is implemented via the classical
integer programming formulation given in eq. (1) of the manuscript. Only the objective function has been
adjusted such that our problem becomes a minimization problem. We set a computing time limit of 300

https://gitlab.itwm.fraunhofer.de/halffmann/maximum-weighted-independent-set-instances
https://gitlab.itwm.fraunhofer.de/halffmann/maximum-weighted-independent-set-instances

Supplementary Material

seconds and MIP gap of 0.0001. No other Gurobi solver settings are altered. For the Gurobi results, we
report the objective function value of the optimal solution and total running time for every instance of every
size. For every instance, the solver status is ’optimal’. That is, the MIP gap is lower than the threshold.

For comparison, we use D-Wave Quantum Annealer’s Version Advantage System 5.2 with over 5,000
qubits. We use 1,000 shots and annealing time of 40us. We apply the formulation in eq. (3) of the
manuscript, also transformed to a minimization problem. The resulting QUBO matrix is encoded in a
dictionary and given to (embedded in) the D-Wave annealer. We apply standard embedding function of
D-Wave Ocean, no further settings altered. For the D-Wave results we report the time for embedding
the QUBO problem on the D-Wave architecture, time spent on the QPU (annealing time plus overhead),
smallest objective function value of the solutions found in 1,000 shots and the number of shots that produce
the smallest objective function value.

size IBM

(no. graph vertices) | Sol. Time
20 2.603

5 22 2.6855
17 2.9454
42 64216

10 50 4.0994
69 8.9249

Table S2. Benchmarking time for MWIS problem using IBM QASM with statevector simulator.

For IBM devices and Qiskit, we first consider instances of size 5 and 10 using QASM (Version 0.39.4
QASM) with statevector simulator and the built-in QAOA algorithm with reps = 3 and COBYLA
optimizer (Maximum number of function evaluations: maxiter=250). The hardware is the same as for the
Gurobi experiments. We find the optimal solution for every instance. Although running time is not of
interest here as the experiments are performed on classical hardware, we report the times in Table For
the real quantum hardware, we use the Falcon r6 QPU located in Ehningen, Germany with 27 qubits. We
use Qiskit Runtime’s built-in QAOAClient with alpha=0.75, the fraction of top measurement samples to be
used for the expectation value, and standard settings such as reps = 1 and SPSA optimize However, only
the first instance of size 5 could be tested due to long queuing times and system offline times. Occasionally,
the optimal solution occurred. Further data could not be retrieved.

We briefly discuss these results in Sections 5 and 6 of the manuscript. However, we emphasize that
this is not a full benchmarking, thus the results (especially for the IBM device) offer only a quick look
at the current capabilities of quantum devices for optimization problems. Better algorithms and more
sophisticated benchmarking methods may exist for the comparison between classical and quantum methods.
We briefly address this also in the manuscript.

!'https://qgiskit.org/documentation/stubs/giskit.algorithms.optimizers.SPSA.html

https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.SPSA.html

	Supplementary Data Benchmarking Instances
	Supplementary Table Benchmarking Results

