Mechanisms by which statins protect endothelial cells from radiationinduced injury in the carotid artery

Karima Ait-Aissa ^{1,2*}, Linette N. Leng ¹, Nathanial R. Lindsey ¹, Xutong Guo ¹, Denise Juhr ¹, Olha M. Koval ¹, Isabella M. Grumbach. MD, PhD ^{1,3,4*}

¹ Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of Medicine, University of Iowa

² Department of Biomedical Sciences, Dental College of Medicine, Lincoln Memorial University

³ Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver

College of Medicine, University of Iowa

⁴ Iowa City VA Healthcare System, Iowa City, IA

Short title: Statins and vascular injury after radiation

Supplemental materials

Reagents:

Phenylephrine (#0754) was obtained from Amresco, acetylcholine (#A6625) and sodium nitroprusside (#S0501) were obtained from Sigma-Aldrich, and Nomega-Nitro-L-arginine (L-NNA, # ab141312) was obtained from Abcam.

Human coronary artery endothelial cells (HCAECs) were kindly provided by Drs. Gerene Denning and Lynn L Stoll (University of Iowa) (40), and human umbilical endothelial cells (HUVECs, # PCS- 100-013) were obtained from the American Type Culture Collection (ATCC). Endothelial cells were grown in endothelial cell medium (ECM) supplemented with growth factors (#1001, ScienCell).

MitoTEMPO (#SML0737) was obtained from Enzo. MitoSOX Red (#D1168), MitoTracker
Green FM (#M7514), and 6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate,
acetyl ester (CMH2DCFDA, # C6827 were obtained from ThermoFisher.
Tetramethylrhodamine methyl ester (TMRM, #T668) was purchased from Molecular Probes.
ECL chemiluminescent substrate was obtained from ThermoScientific (34580).
Antibodies for NFκB-p65 and for GAPDH were purchased from Cell Signaling (CST 8284S and CST 5174S).

Supplemental methods:

Cell counts

Wells of 6-well plates were seeded with 30,000 HUVECs and the cultures were grown to 80%-

90% confluency. Then, atorvastatin or pravastatin was added at a concentration of 5 μM or 10

 $\mu M.$ After incubation overnight (approximately 12 hours), the HUVECs were rinsed with ECM,

trypsinized and counted using an automated cell counter (Beckman Coulter).

MTT assay

HUVECs were seated in 96-well plate at a density of 1,000 cells per well and cultured for 48 h

before performing MTT toxicity assay. Cells were incubated with statins dissolved in DMSO or DMSO overnight.

The next morning, the MTT stock solution was prepared at a concentration of 5mg/ml in PBS. 10 μ I of MTT stock solution with 90 μ I of media was added into each well for 2 hr. Then, media were aspirated, cells rinsed with PBS and intracellular MTT formazan crystals dissolved in 50 μ I DMSO. Absorbance was measured in a microtiter plate reader at a wavelength of 570 nm.

Immunoblot

Western blot analysis for NFkB-p65 was performed in cell lysates of HUVECs cells subjected to

irradiation (4Gy) in the presence or absence of Pravastatin (10 μ M) or Atorvastatin (5 μ M). Briefly,

the cells were harvested, lysed in RIPA buffer supplemented with proteinase and phosphatase

inhibitors, and then sonicated using a sonicator. After centrifugation for 10 min at 10,000 rpm, the total protein was quantified using the BCA assay and 20 μ g of protein per sample were loaded into SDS-PAGE gels. The proteins were then transferred to PVDF membranes, incubated in 5% milk and then, with primary antibodies for NF κ B-p65 (1:1000) and GAPDH (1:5000) as a loading control. Blots were washed 3 times for 10 min with 0.05% Tween-20 in TBS, incubated for 1 hr at room temperature with the respective secondary antibodies, and then washed again. The blots were then developed using ECL chemiluminescent substrate according to the manufacturer's instructions.

Supplementary table: Primer sequences used for RT-PCR

Nuclear Factor kappa	Forward	5'-TGGACAGCAAATCCGCCCTG-3'
B (NFκB) p50	Reverse	5'-TGTTGTAATGAGTCGTCATCCT-3'
NFκB p65	Forward	5'-AGGCAAGGAATAATGCTGTCCTG
	Reverse	5'-ATCATTCTCTAGTGTCTGGTTGG-3'
Tumour Necrosis	Forward	5'-CACTAAGAATTCAAACTGGGGC-3'
Factor alpha (TNF α)	Reverse	5'-GAGGAAGGCCTAAGGTCCAC-3'
Cytochrome C Oxidase	Forward	5'-TCGCAATTCCTACCGGTGTC-3'
I (mt- COI)	Reverse	5'-CGTGTAGGGTTGCAAGTCAGC-3'
NADH Ubiquinone	Forward	5'-GCACCTACCCTATCACTCACA-3'
Oxidoreductase Chain		
1 (mt-ND1)	Reverse	5'-GTTTGGGCTACGGCTCG-3'
NADH Dehydrogenase	Forward	5'-ATGTGGTTCGAGATTCTCC-3'
[ubiquinone] 1 Alpha		
Subcomplex subunit 1	Reverse	5'-GCAACCCTTTTTCCTTGC-3'
(NDUF1)		
Cytochrome C Oxidase	Forward	5'AGGAAGAGAGTGGTGTTTTTTATTGGGTAAGTTGT3'
11 (COX11)	Reverse	5'CAGTAATACGACTCACTATAGGGAGAAGGCTACCT
		TAACTACCA-AACTCCTC3'
Ribosomal 18S	Forward	5'-CCCTATCAACTTTCGATGGTAGTCG-3'
	Reverse	5'-CCAATGGATCCTCGTTAAAGGATTT-3'

Supplemental Figure 1

Supplemental Figure 1: Cytotoxicity assays following Pravastatin and Atorvastatin treatment.

All panels compare HCAECs subjected to pretreatment with pravastatin or atorvastatin. Cell survival measurement in the presence of pravastatin (Prava, 5 μ M and 10 μ M, overnight) (**A**) or Atorvastatin (Atorva, 5 μ M and 10 μ M, overnight) (**B**). Cell viability measurement via MTT assay in cells pretreated with pravastatin or atorvastatin (5 μ M and 10 μ M, overnight)(**C**). Statistical analysis by Kruskal-Wallis test.

Supplemental Figure 2

Supplemental Figure 2: Protein expression of NFkB-p65 following irradiation in endothelial

cells.

Western blot analysis for NFkB-p65 and GAPDH from lysates of HUVECs cells subjected to irradiation (4Gy) in the presence of pravastatin (10uM) or atorvastatin (5uM) at 24 hr and 240 hr.

Supplemental Figure 3

Pravastatin treatment

Atorvastatin treatment

H 240 hr

Supplemental Figure 3: Neither pravastatin nor atorvastatin affects IR-induced transcription of nuclear DNA.

(A-D) Effects of pretreatment with pravastatin (Prava, 10 μ M, 1 hr) on nucDNA damage in HCAECs after irradiation (IR, 4 Gy). (A, B) Quantitative (q)RT-PCR for NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1 (B, NDUF1), with cDNA normalized to 100 ng at 24 and 240 hr after IR. (C, D) qRT-PCR for cytochrome c oxidase 11 (D, COX11), with cDNA normalized to 100 ng at 24 and 240 hr after IR. (E-H) Effects of pretreatment with atorvastatin (5 μ M, overnight) on nucDNA damage in HCAECs subjected to IR. (E, F) qRT-PCR for NDUF1 (B), with cDNA normalized to 100 ng at 24 and 240 hr after IR. (G, H) qRT-PCR for COX11 (D), with cDNA normalized to 100 ng at 24 and 240 hr after IR. Statistical analysis by Kruskal-Wallis test. Ns indicates not significant.