Appendix 1

Fisher's information matrix calculations are presented here.
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As a first step, 1,,(9) was calculated as follows:
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In order to quantify the 1,,(9) based on log-likelihoods, we use equation (2) as explained earlier in section
2-2 and it means as the expectation is continuous it is going to do integration. So,
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In addition, split it into two integrals as follow and try to solve them separately.
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Now, we do a variable change. After transformation X = X —X,, we get the following result:
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Consequently, we needed to calculate relations (A1) and (A2), which are also given in the continuation of
their computation, so the 1,,(0) result is as follows:

The calculations related to Al and A2 are given below. First Al is calculated:

rw%dx (A1)
= [y*+X7]

Al




. . X
The variable change is used. Letx=—, So
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The reduction technique is used. It is so cool and it is used for so many different integrals.
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The integration by parts is used, so let u = (1+x*)?and dv = di (arctan(x))dx . Now we have:
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In the above equation, the first term goes to zero, and in the second term consider u = arctan(x) and

x = tan(u) so du = (1+ x*) *dx.. Now substituting everything in the above equation and we have:
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Let u=x
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We know that tan(x) = &((X))and then the above equation can be reduced to follows:
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Now integration by parts is used again. Let u=x and dv =sin(x) cos*(x)dx
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The reduction formula is used again. We have cos*(x) and want to reduce it to cos*(x) and by using the
useful integral, we have:
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Therefore, we evaluate the value of Al. using the same techniques A2 is evaluated as follows:
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The variable change is used. Letx=—, So
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By reduction formula, we have:
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Now integration by parts is used, let u = (1+ x*) "and dv = ™ (arctan(x)) so we have:
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The first term goes to zero. Now u substation is used u = arctan(x) and then du = (1+x*)™*dx so
plugging everything in the above formula and we have:
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We know that tan(x) = sin(x) , SO
cos(x)
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Using integration by part again, let u=xand dv =sin(x)cos(x)dx, So:
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The left term is 7 and by and the right term is reduced by using the useful integral as follows:
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Therefore, the value of A2 is:
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In the next step, ,,(f) is calculated. It is necessary to calculate relations 1, 2, and 3 to calculate 1, (6)
(Relations Al and A2 have already been calculated, and the solution to relation A3 is given below).
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We do a variable change. Letx =—, So
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Therefore, the value of A3 is as follows:
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In addition, 1,(f)and 1,,(f) calculations are provided as follows:
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