
Appendix 1 

Fisher's information matrix calculations are presented here.  
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As a first step,
11( )I   was calculated as follows: 
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 In order to quantify the 
11( )I   based on log-likelihoods, we use equation (2) as explained earlier in section 

2-2 and it means as the expectation is continuous it is going to do integration. So,   
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In addition, split it into two integrals as follow and try to solve them separately. 
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Now, we do a variable change. After transformation 0X x x  , we get the following result:  
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Consequently, we needed to calculate relations (A1) and (A2), which are also given in the continuation of 

their computation, so the 
11( )I  result is as follows: 
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The calculations related to A1 and A2 are given below. First A1 is calculated: 
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The variable change is used. Let
X

x


 , So 
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The reduction technique is used. It is so cool and it is used for so many different integrals. 
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The integration by parts is used, so let 
2 2(1 )u x   and (arctan( ))

d
dv x dx

dx
 . Now we have:  

                                   
3

2 2 2

5

1
[(1 ) arctan( ) | 4 (1 ) arctan( ) ]x x x x x dx




 




        

In the above equation, the first term goes to zero, and in the second term consider arctan( )u x  and 

tan( )x u so
2 1(1 )du x dx  . Now substituting everything in the above equation and we have: 
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Let u x   
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We know that 
sin( )

tan( )
cos( )

x
x

x
 and then the above equation can be reduced to follows:  
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Now integration by parts is used again. Let u x  and 2sin( )cos ( )dv x x dx  
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The reduction formula is used again. We have 
4cos ( )x  and want to reduce it to 

2cos ( )x  and by using the 

useful integral, we have: 
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Therefore, we evaluate the value of A1. using the same techniques A2 is evaluated as follows:  
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The variable change is used. Let
X

x


 , So 
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By reduction formula, we have: 
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Now integration by parts is used, let 
2 1(1 )u x   and (arctan( ))

d
dv x

dx
 so we have: 
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The first term goes to zero. Now u substation is used arctan( )u x  and then 
2 1(1 )du x dx   so 

plugging everything in the above formula and we have: 
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Let u x   
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We know that 
sin( )

tan( )
cos( )

x
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(A2) 



Using integration by part again, let u x and sin( )cos( )dv x x dx , So: 
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The left term is  and by and the right term is reduced by using the useful integral as follows:  
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Therefore, the value of A2 is: 
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In the next step, 22 ( )I   is calculated. It is necessary to calculate relations 1, 2, and 3 to calculate 22 ( )I   

(Relations A1 and A2 have already been calculated, and the solution to relation A3 is given below). 
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We do a variable change. Let
X

x


 , So 
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Therefore, the value of A3 is as follows: 
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In addition, 21( )I  and 12 ( )I  calculations are provided as follows: 
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