

Supplementary Material

1 Supplementary Data

Filtering steps

Different pipelines were used for the analysis of the RNA-seq data. We applied different manual filters to reduce the number of artifacts and false positive called variants. Filters applied to each of the callers are described in the following sections:

Arriba

- 1. Column "confidence": Discard low-confidence variants
- 2. <u>Column "discordant_mates"</u>: Discard variants with <5 spanning reads
- 3. Column "split_reads1 + split_reads2": Discard variants with <3 split reads
- 4. Manual curation (explained below)

CICERO

- 1. Column "rating": Discard rating LQ (low quality) variants
- 2. <u>Column "medal"</u>: Keep variants with medal $\geq 3^*$
- 3. <u>Column "readsA + readsB"</u>: Discard variants with <5 supporting reads

4. Manual curation (explained below). Moreover, have a look at column "score" (high values are supportive of true positivity).

* Estimated pathogenicity assessment using St. Jude Medal Ceremony

deFuse

- 1. <u>Column "span_count"</u>: Discard variants with <5 spanning reads
- 2. <u>Column "splitr_count"</u>: Discard variants with <3 split reads

3. <u>Column "gene_location1/gene_location2"</u>: keep those genes with the breakpoint in the coding region

- 4. <u>Column "exon_boundaries"</u>: Keep Exon_boundaries=YES
- 5. Manual curation (explained below).

Fusion Catcher

1. <u>Column "Fusion_description"</u>: Discard variants with the following tags: Bodymap2, ribosomal, Banned, Pseudogene, lncRNA.

- 2. Column "Spanning pairs reads": Discard variants with <5 spanning reads
- 3. <u>Column "Spanning_unique_reads"</u>: Discard variants with <3 split reads

4. Manual curation (explained below). Moreover, review the "Fusion_finding_method" column and keep variants found with more than one aligner (BOWTIE/BLAT/STAR/BOWTIE2).

STAR-Fusion

- 1. <u>Column "SpanningFrag"</u>: Discard variants with <5 spanning reads
- 2. <u>Column "JunctionReads"</u>: Discard variants with <3 split reads
- 3. Manual curation (explained in the main text).

2 Supplementary Figures and Tables

2.1 Supplementary Figures

Supplementary figure 1. Sensitivity and precision graphics obtained by the different pipelines for a) cell lines and b) patients.

Supplementary Material

Supplementary figure 2. Differences in precision before and after applying the filters for each pipeline. Orange bars show sensitivity. Data is shown separately for A) Cell lines, B) Patients, and C) Global.

2.2 Supplementary tables

Cell line	Leukemia subtype	Age/Gender	Alteration	
EOL-1 (ERR3003531)	acute myeloid leukemia	33 year/male	FIP1L1::PDGFRA	del(4)(q12q12)
HL-60 (ERR3003540)	acute myeloid leukemia	36 year/female	CYFIP2::PLCG2	t(5;16)(q33.3;q23.3)
KASUMI-1 (ERR3003548)	acute myeloid leukemia	7 year/male	RUNX1::RUNX1T1	t(8;21)(q22;q22)
KG-1 (ERR3003550)	acute myeloid leukemia	59 year/male	FGFR10P2::FGFR1	t(8;12)(p12;p11)
NB-4 (ERR3003575)	acute myeloid leukemia	23 year/female	PML::RARA	t(15;17)(q22;q12)
SKNO-1 (ERR3003594)	acute myeloid leukemia	22 year/male	RUNX1::RUNX1T1	t(8;21)(q22;q22)
697 (ERR3003513)	B-Cell Precursor-acute lymphoblastic leukemia	12 year/male	TCF3::PBX1	t(1;19)(q23;p13)
KOPN-8 (ERR3003554)	B-Cell Precursor-acute lymphoblastic leukemia	3 month/female	KMT2A::MLLT1	t(11;19)(q23;p13.3)
REH	B-Cell Precursor-acute lymphoblastic leukemia	15 year/female	ETV6::RUNX1	t(12;21)(p13;q22)
(ERR3003588)			RUNX1::PRDM7	t(16;21)(q22;q16)
SEM (ERR3003592)	B-Cell Precursor-acute lymphoblastic leukemia	5 year/female	KMT2A::AFF1	t(4;11)(q21;q23)
CCRF-CEM (ERR3003519)	T-cell acute lymphoblastic leukemia	4 year/female	NKX2.5::BCL11B	t(5;14)(q35;q32.2)
DND-41 (ERR3003527)	T-cell acute lymphoblastic leukemia	13 year/male	TLX3::BCL11B	t(5;14)(q35;q32.2)
HPB-ALL (ERR3003541)	T-cell acute lymphoblastic leukemia	14 year/male	CBFB::MYLPF	inv(16)(p13q22) / t(16;16)(p13;q22)
RPMI-8402	T-cell acute lymphoblastic leukemia	16 year/female	LMO1::TRD	t(11;14)(p15;q11)
(ERR3003591)			SIL::TAL1	del(1p32)

Supplementary Table 1. Main characteristics of the different leukemia cell lines used for the analysis.

Sample	Sex	Leukemia subtype	Karyotype	FISH	RT-qPCR
Sample 1	Female	B-ALL	46,XX,?t(7;9),?t(9;12),t(9;22)(q34;q11)(22)/46,XX(3)	97% of the nuclei with <i>BCR::ABL1</i> rearranged	BCR::ABL (P210)
Sample 2	Male	B-ALL	47, XY,t(9;22)(q34;q11),+17	87% of the nuclei with <i>BCR::ABL1</i> rearranged	BCR::ABL (P190)
Sample 3	Male	B-ALL	46,XY,del(6)(q?13q?23),add(9)(q34),del(12)(p13), del(13)(q?12q?14)(9)/47,idem,+?10(8)/46,XY(3)	Not performed	ETV6::RUNX1
Sample 4 Male	B-ALL	46,XY,del(6)(q13q25)[4]/46,XY[34]	50% of the nuclei with	ETV6::RUNX1	
			of them with deleted <i>ETV6</i>	P2RY8::CRLF2	
Sample 5	Female	B-ALL	46,XX,der(19)t(1;19)(q23;p13)[6]/46,XX[46]	27% of the nuclei with <i>TCF3</i> rearranged.	TCF3::PBX1
Sample 6	Female	B-ALL	46, XX	98% of the nuclei with <i>KMT2A</i> rearranged	KMT2A::AF4
Sample 7	Male	AML	46,XY,der(11)(q23)[3]/46,XY[17]	22% of the nuclei with <i>KMT2A</i> rearranged	KMT2A::AF9
Sample 8	Male	T-ALL	no metaphases	No alterations identified	STIL::TAL1
Sample 9	Male	T-ALL	46,XY[5]	No alterations identified	STIL::TAL1

Sample 10	Female	AML	47,XX,+8[3]/47,XX,+1[2]/46,XX[5]	Not performed	RUNX1::CBF2AT3
Sample 11	Male	B-ALL	no metaphases 86% of the nuclei presented a monoallelic deletion of <i>JAK2</i>		PAX5::NOL4L
Sample 12	Male	AML	47, XY, del(7)(q?32), inv(16)(p13q22), +22 [17]	Not performed	CBFB::MYH11
Sample 13	Female	AML	46,XX,t(15;17)(q24;q21)	Not performed	PML::RARA
Sample 14	Male	B-ALL	47,XY,+5[10]/46,XY[8]	97% of the nuclei presented signs suggestive of chromosome 5 trisomy	P2RY8::CRLF2
Sample 15	Female	B-ALL	46,XX,del(5)(q33),del(9)(p22),-12,- 20,+mar1,+mar2[26] / 46,XX[7]	 28% of the nuclei presented 3 copies (2 smaller) of <i>ETV6</i>, suggesting a rearrangement. 60% of the nuclei presented 3 copies (2 smaller) of <i>ABL1</i>, suggesting a rearrangement. 	ETV6::ABL1

Supplementary Table 2. Main alterations identified by different conventional methodologies in patients used for the sequencing and the analysis of the pipelines.

Pipeline	Workflow	Aligner	Fusion calling based on	Filters	Reference
Arriba	 Alignment Detection of chimeric reads Filtering step 	STAR- aligner	Split reads Discordant reads	Read-level (single read) event-level (multiple reads)	Uhrig et al., 2021 Genome Res
CICERO	 Alignment Identification of fusion breakpoint Fusion annotation Ranking of fusion candidates (filtering) 	STAR- aligner	Discordant reads Soft clipped reads	signal-to-noise-recognition procedures	Tian et al., 2020 Genome Biol
deFuse	 Alignment Build a list of candidates AdaBoost classifying (filtering) 	Bowtie	Discordant reads Split reads	dynamic programming AdaBoost classifier	McPherson A et al., 2011 PLoS Comput.Biol
Fusion Catcher	 Alignment (4 methods) Building of a preliminary list of candidates Filtering step 	Bowtie, BLAT, STAR- aligner, Bowtie2	Split reads Discordant reads	ChimerDB2, CACG, and ConjoinG BodyMap2 ad-hoc/random fusion	Nicorici et al., 2014 bioRxiv
STAR- fusion	 Alignment Fusion annotation Filtering step 	STAR- aligner	Split reads Discordant reads	FusionFilter framework	Haas et al., 2019 Genome Biol

Supplementary table 3. Main characteristics of the different algorithms analyzed.