Supplementary Material

Deep-Learning and Conventional Radiomics to Predict IDH Genotyping Status based on Magnetic

Resonance Imaging Data in Adult Diffuse Glioma

Loop	Training Cohort				_	Validation Cohort					Pinte				
	Public Local			P _{intra} Public			Local			Pintra					
	Mutation	Wildtype	Total	Mutation	Wildtype	Total	-	Mutation	Wildtype	Total	Mutation	Wildtype	Total		
Loop1	83	112	195	96	146	242	0.61	6	17	23	14	12	26	0.09	1.00
Loop2	78	116	194	101	142	243	0.85	11	13	24	9	16	25	0.68	1.00
Loop3	81	117	198	98	141	239	1.0	8	12	20	12	17	29	1.0	1.00
Loop4	80	119	199	99	139	238	0.84	9	10	19	11	19	30	0.66	1.00
Loop5	81	112	193	98	146	244	0.78	8	17	25	12	12	24	0.32	1.00
Loop6	81	117	198	98	141	239	1.0	8	12	20	12	17	29	1.0	1.00
Loop7	79	117	196	100	141	241	0.88	10	12	22	10	17	27	0.76	1.00
Loop8	82	118	200	97	141	238	1.0	7	11	18	13	17	30	1.0	1.00
Loop9	80	118	198	99	141	240	0.93	9	11	20	11	17	28	0.92	1.00
Loop10	76	115	191	104	144	248	0.72	13	14	27	6	14	20	0.34	1.00

Table S1 Data division in cross-validation

The P-values of IDH status are calculated between the public and local cohorts (Pintra) and between training and validation cohorts (Pintra) by using chi-square test.

Acronym	Machine-learning classifier name	Short description			
LR	logistic regression	A generalized linear regression model with			
		the form $Y = WX + b$ (1).			
kNN	k-nearest neighbors	A non-parametric learning algorithm that			
		determines the class of the unknown			
		sample based on the types of the nearest k			
		samples (2).			
NB	naive bayes	A classifier that is based on Bayes'			
		theorem (3).			
l-SVM	support vector machines with linear	A machine-learning algorithm that is the			
	kernel	specific support vector machine using the			
		linear kernel (4).			
r-SVM	support vector machines with radial	A machine-learning algorithm that is the			
	basis function kernel	specific support vector machine using the			
		radial basis function (5).			
RF	random forest	An ensemble classifier that uses multiple			
		decision trees to train and predict samples			
		(6).			
Adaboost	adaptive boosting	A machine-learning algorithm that trains			
		different weak classifiers on the same			
		training set and then assembles them to			
		create a strong classifier (7).			
LDA	linear discriminant analysis	A machine-learning algorithm that			
		projects high-dimensional sample features			
		into the best discrimination vector space			
		for classification (8).			

Table S2 the description of eight classifiers

Table S3 LASSO feature selection in each outer loop

Loop	Feature Name	Number
	['flair_wt_original_shape_Sphericity', 'flair_wt_wavelet-HLL_firstorder	
	_Skewness', 'flair_wt_wavelet-HLH_gldm_DependenceVariance', 'flair	
Loop 1	_tc_wavelet-LHL_firstorder_Skewness', 't1_wt_original_glrlm_RunEnt	8
	ropy', 't1_wt_wavelet-LLH_glrlm_RunEntropy', 't2_wt_wavelet-HLH_	
	gldm_DependenceVariance', 't2_tc_wavelet-LLL_firstorder_10Percentil	
	e']	
	['flair_wt_original_shape_Sphericity', 'flair_tc_wavelet-LHL_firstorder	
	_Skewness', 't1_wt_original_glrlm_RunEntropy', 't1_wt_wavelet-LLH	
Loop 2	_glrlm_RunEntropy', 't1ce_wt_wavelet-LHL_glszm_LargeAreaLowGr	7
	ayLevelEmphasis', 't2_wt_wavelet-HLL_glcm_Idn', 't2_tc_wavelet-LL	
	L_firstorder_10Percentile']	

	['flair_wt_original_shape_Sphericity', 'flair_wt_wavelet-HLH_gldm_De	
	pendenceVariance', 't1_wt_original_glrlm_RunEntropy', 't1_wt_origina	
Loop 3	l_gldm_DependenceEntropy', 't1_wt_wavelet-LLH_glrlm_RunEntropy	9
	', 't1ce_wt_wavelet-LLH_glcm_Imc1', 't2_wt_wavelet-HLL_glcm_Idn	
	', 't2_wt_wavelet-LLL_glcm_Imc2', 't2_tc_wavelet-LLL_firstorder_10	
	Percentile']	
	['flair_wt_wavelet-HLH_gldm_DependenceVariance', 'flair_wt_wavelet	
	-HHL_glcm_DifferenceVariance', 'flair_wt_wavelet-HHL_glcm_SumS	
Loop 4	quares', 'flair_tc_wavelet-LHL_firstorder_Skewness', 't1_wt_original_g	7
	lrlm_RunEntropy', 't1_wt_original_gldm_DependenceEntropy', 't2_tc_	
	wavelet-LLL_firstorder_10Percentile']	
	['flair_wt_original_shape_Sphericity', 'flair_wt_wavelet-HLH_gldm_De	
	pendenceVariance', 'flair_tc_wavelet-LHL_firstorder_Skewness', 't1_w	
Loop 5	t_original_glrlm_RunEntropy', 't1ce_tc_wavelet-LLH_glszm_LargeAre	8
	aLowGrayLevelEmphasis', 't2_wt_wavelet-HLL_glcm_Idn', 't2_wt_wa	
	velet-LLL_glcm_Imc2', 't2_tc_wavelet-LLL_firstorder_10Percentile']	
	['flair_wt_original_shape_Sphericity', 'flair_wt_wavelet-HLH_gldm_De	
Loop 6	pendenceVariance', 't1_wt_original_glrlm_RunEntropy', 't2_wt_wavele	6
	t-HLH_gldm_DependenceVariance', 't2_wt_wavelet-LLL_glcm_Imc2',	
	't2_tc_wavelet-LLL_firstorder_10Percentile']	
	['flair_wt_original_shape_Sphericity', 'flair_wt_wavelet-HLH_gldm_De	
Loop 7	pendenceVariance', 'flair_tc_wavelet-LHL_firstorder_Skewness', 't1_w	6
	t_original_glrlm_RunEntropy', 't1_wt_wavelet-LLH_glrlm_RunEntrop	
	y', 't2_tc_wavelet-LLL_firstorder_10Percentile']	
	['flair_wt_wavelet-HLH_gldm_DependenceVariance', 'flair_tc_wavelet-	
Loop 8	LHL_firstorder_Skewness', 't1_wt_original_glrlm_RunEntropy', 't2_wt	5
	_wavelet-LLL_glcm_Imc2', 't2_tc_wavelet-LLL_firstorder_10Percentil	
	e']	
	['flair_wt_original_shape_Sphericity', 'flair_wt_wavelet-HLH_gldm_De	
Loop 9	pendenceVariance', 'flair_tc_wavelet-LHL_firstorder_Skewness', 't1_w	6
	t_original_glrlm_RunEntropy', 't2_wt_wavelet-HLL_glcm_Idn', 't2_tc_	
	wavelet-LLL_firstorder_10Percentile']	
	['flair_wt_wavelet-HLH_gldm_DependenceVariance', 'flair_tc_wavelet-	
	LHL_firstorder_Skewness', 't1_wt_original_glrlm_RunEntropy', 't1_wt	
Loop 10	_original_gldm_DependenceEntropy', 't1_wt_wavelet-LLH_glrlm_Run	7
	Entropy', 't2_wt_wavelet-HLL_glcm_Idn', 't2_tc_wavelet-LLL_firstord	
	er_10Percentile']	

_

Feature name consists of the description of the modality, tumor subregion, filter and feature type.

Feature Name	Selected Time	P*
T1WI_signature		5.91e-69
T1CE_signature		1.03e-80

Table S4 the DL signatures and CR features used as predictors of the classifiers

T2WI_signature		8.96e-78
FLAIR_signature		5.62e-66
T1WI_WT_original_glrlm_RunEntropy	10	4.11e-13
T2WI_TC_wavelet-LLL_firstorder_10Percentile	10	5.57e-22
FLAIR _WT_wavelet-HLH_gldm_DependenceVariance	9	7.53e-07
FLAIR _TC_wavelet-LHL_firstorder_Skewness	8	3.94e-04
FLAIR _WT_original_shape_Sphericity	7	1.18e-08
T2WI_WT_wavelet-HLL_glcm_Idn	5	2.76e-07
T1WI_WT_wavelet-LLH_glrlm_RunEntropy	5	1.87e-04

Feature names consist of the descriptions of the modality, tumor subregion, filter, and feature type. *P-values of features are calculated between IDH mutation and IDH wildtype by using unpaired *t*-test.

Subcategory	Classifier	Accuracy	AUC	Specificity	Sensitivity	RSDAUC
	LR	0.843 ± 0.044	0.920±0.043	0.896±0.036	0.769 ± 0.109	4.7%
	kNN	$0.848 {\pm} 0.065$	$0.904{\pm}0.081$	0.910±0.065	$0.758 {\pm} 0.107$	9.0%
	NB	0.850 ± 0.052	$0.916{\pm}0.063$	0.885 ± 0.049	0.799±0.092	6.9%
DL+CR	l-SVM	0.821 ± 0.050	0.812 ± 0.052	$0.865 {\pm} 0.091$	$0.758 {\pm} 0.115$	6.4%
	r-SVM	0.856±0.056	0.911 ± 0.073	0.896 ± 0.054	0.799±0.092	8.0%
	RF	0.842 ± 0.051	0.917 ± 0.052	0.882 ± 0.067	$0.783 {\pm} 0.090$	5.7%
	Adaboost	0.827 ± 0.050	0.903 ± 0.044	0.864 ± 0.066	$0.773 {\pm} 0.091$	4.9%
	LDA	0.839 ± 0.048	$0.918 {\pm} 0.045$	$0.885 {\pm} 0.036$	0.774 ± 0.114	4.9%
	Average	0.841 ± 0.051	$0.900{\pm}0.065$	$0.885 {\pm} 0.059$	$0.777 {\pm} 0.098$	7.2%
	LR	0.835±0.061	0.915±0.054	0.882 ± 0.046	0.769±0.129	5.9%
	kNN	0.854±0.047	$0.908 {\pm} 0.057$	0.885±0.054	0.809±0.071	6.3%
	NB	0.841 ± 0.067	0.911 ± 0.056	0.882 ± 0.054	0.784 ± 0.121	6.1%
DL	l-SVM	0.837 ± 0.044	0.832 ± 0.048	0.861 ± 0.074	0.804 ± 0.110	5.8%
	r-SVM	0.825 ± 0.055	0.913 ± 0.052	0.864 ± 0.044	0.769 ± 0.111	5.7%
	RF	0.829 ± 0.054	0.911 ± 0.056	$0.857 {\pm} 0.063$	$0.788{\pm}0.083$	6.1%
	Adaboost	0.829 ± 0.062	0.900 ± 0.054	$0.854{\pm}0.081$	$0.794{\pm}0.073$	6.0%
	LDA	0.827 ± 0.068	$0.913 {\pm} 0.055$	$0.875 {\pm} 0.056$	$0.759{\pm}0.124$	6.0%
	Average	$0.835 {\pm} 0.056$	$0.900{\pm}0.058$	0.870 ± 0.059	0.784 ± 0.102	6.4%
	LR	0.771±0.051	0.830 ± 0.066	0.833±0.076	$0.683 {\pm} 0.081$	8.0%
	kNN	0.772 ± 0.050	0.824 ± 0.085	0.906 ± 0.054	$0.577 {\pm} 0.107$	10.3%
	NB	0.767 ± 0.044	0.815 ± 0.072	0.913±0.055	$0.557 {\pm} 0.094$	8.8%
CR	l-SVM	$0.688 {\pm} 0.098$	0.672 ± 0.095	0.757±0.149	0.588 ± 0.141	14.1%
	r-SVM	0.757 ± 0.062	0.814 ± 0.083	0.865 ± 0.083	0.602 ± 0.134	10.2%
	RF	$0.763 {\pm} 0.090$	$0.813 {\pm} 0.099$	0.809 ± 0.094	0.697±0.149	12.2%
	Adaboost	0.736 ± 0.083	0.791 ± 0.104	$0.833 {\pm} 0.091$	0.597 ± 0.141	13.1%
	LDA	0.780±0.061	0.833±0.062	0.872 ± 0.084	0.647±0.123	7.4%
	Average	0.754 ± 0.072	0.799±0.095	0.848 ± 0.099	0.618 ± 0.127	11.9%

Table S5 the validation performance based on the different feature subcategories

Figure S1. Data preparation for deep-learning model. (A) Tumor under different spatial dimensions. (B) Create independent input sample process. Splitting independent input samples from the 3-channel image sequence with a total length of 33 by setting the sample-sequence length and moving stride.

REFERENCES

- Chen H, Zhang X, Wang X, Quan X, Deng Y, Lu M, Wei Q, Ye Q, Zhou Q, Xiang Z, et al. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: a multicenter study. *Eur Radiol* (2021) 31:7913– 7924. doi: 10.1007/s00330-021-07748-6
- Guo G, Wang H, Bell D, Bi Y, Greer K. KNN Model-Based Approach in Classification. In: Meersman R, Tari Z, Schmidt DC, editors. *On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE*. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer (2003). p. 986–996 doi: 10.1007/978-3-540-39964-3_62
- 3. Rish I. An empirical study of the naive Bayes classifier. *IJCAI 2001 workshop on empirical methods in artificial intelligence*. (2001). p. 41–46
- Du J-Z, Lu W-G, Wu X-H, Dong J-Y, Zuo W-M. L-SVM: A radius-margin-based SVM algorithm with LogDet regularization. *Expert Systems with Applications* (2018) 102:113–125. doi: 10.1016/j.eswa.2018.02.006
- Zhang X, Lu X, Shi Q, Xu X, Leung HE, Harris LN, Iglehart JD, Miron A, Liu JS, Wong WH. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. *BMC Bioinformatics* (2006) 7:197. doi: 10.1186/1471-2105-7-197
- 6. Liaw A, Wiener M. Classification and regression by randomForest. *R news* (2002) 2:18–22.
- 7. Chen P, Pan C. Diabetes classification model based on boosting algorithms. *BMC Bioinformatics* (2018) 19:109. doi: 10.1186/s12859-018-2090-9
- Hastie T, Tibshirani R, Buja A. Flexible Discriminant Analysis by Optimal Scoring. *Journal of the American Statistical Association* (1994) 89:1255–1270. doi: 10.1080/01621459.1994.10476866