

Supplementary Material

Disruption of endosomal trafficking with EGA alters TLR9 cytokine response in human plasmacytoid dendritic cells

Matthew J Wiest^{1,2}, Chao Gu¹, Hyoungjun Ham³, Laurent Gorvel⁴, Mira T Keddis⁵, Leroy W Griffing,⁶, HyeMee Joo^{1,2}, Jean-Pierre Gorvel⁷, Daniel D Billadeau³, SangKon Oh^{1, 2*}

¹Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA

²Baylor Institute of Biomedical Studies, Baylor University, Waco, TX, USA

³Department of Immunology, Mayo Clinic, Rochester, MN, USA

⁴CRCM, Aix Marseille Universite, INSERM, Marseille, France

⁵Department of Nephrology, Mayo Clinic, Scottsdale, AZ, USA

⁶Department of Rheumatology, Mayo Clinic, Scottsdale, AZ, USA

⁷CIML, Aix Marseille Universite, INSERM, Marseille, France

* Correspondence: SangKon Oh: Oh.Sangkon@mayo.edu

This file includes:

Supplementary Figure 1. Kinetics of EGA-mediated suppression of cytokine expression in CpG-ODN2216-stimulated pDCs.

Supplementary Figure 2. EGA diminishes IFN α and TNF α secretion in CpG-DOTAP and gDNA/LL37 stimulated pDCs.

Supplementary Figure 3. EGA and PIK fyve inhibitors reduce CpG-ODN2216 cytokine secretion in pDCs.

Supplementary Figure 4. EGA and PIK fyve inhibitors do not affect blood pDC viability.

Supplementary Figure 5. Trace of CpG-ODN2216 in plasmacytoid dendritic cells.

Supplementary Figure 6. EGA- and YM201636-treatment decrease colocalization of CpG-ODN2216-FITC with LAMP1/2⁺ compartments.

Supplementary Figure 7. EGA and YM201636 do not affect endo-lysosomal acidification.

Supplementary Table 1. Antibodies utilized in flow cytometry in this study.

Supplementary Table 2. Antibodies utilized in immunoblotting in this study.

Supplementary Table 3. Antibodies utilized in confocal microscopy in this study.

Supplementary Table 4. Information of SLE Patients recruited in this study.

Supplementary Figure 1. Kinetics of EGA-mediated suppression of cytokine expression in CpG-ODN2216-stimulated pDCs

pDCs stimulated with CpG-ODN2216 overnight with 20 μ M EGA or vehicle added at time points post-CpG-ODN2216 stimulation. IFN α and TNF α concentrations in supernatants after overnight stimulation. Data from 4 different subjects analyzed by two-way ANOVA with Sidak multiple comparison test. **P*< 0.05, ***P*< 0.01, ****P*< 0.001, *****P*<0.0001, for comparison between groups.

Supplementary Figure 2. EGA diminishes IFN α and TNF α secretion by CpG-DOTAP- and gDNA/LL37-stimulated pDCs.

IFN α and TNF α concentrations in supernatants of pDCs pre-treated with 20 μ M EGA or vehicle and stimulated with (A) CpG-ODN2216 with/out DOTAP, (B) CpG-ODN2006 with/out DOTAP, or (C) gDNA/LL37 overnight. Data from 3-4 different subjects analyzed by two-way ANOVA with Sidak multiple comparison test (A and B) or two-tailed paired t-test (C). **P*< 0.05, ***P*< 0.01, *****P*< 0.0001, ns – not significant for comparison between groups.

Supplementary Figure 3. EGA and PIKfyve inhibitors reduce IFN α and TNF α secretion by CpG-ODN2216-stimulated pDCs.

IFN α and TNF α levels in supernatants of pDCs pre-incubated with 20 μ M EGA, 1 μ M YM201636, or vehicle, and stimulated with CpG-ODN2216 overnight. Data were generated with pDCs isolated from 4 different subjects Two-way ANOVA with Tukey multiple comparison test. ****P*< 0.001, *****P*<0.0001, for comparison between groups.

Supplementary Figure 4. EGA and PIKfyve inhibitors do not affect blood pDC viability.

Representative viability assessment of pDCs pre-incubated with 20μ M EGA, 1μ M YM201636, or vehicle, and stimulated with CpG-ODN2216 overnight.

LAMP1 ODN

Supplementary Figure 5. Trace of CpG-ODN2216 in pDCs.

pDCs were incubated with 1μ M CpG-ODN2216 – FITC. Three representative images of CpG-ODN overlap with endolysosomal markers (EEA1, LAMP1) at each time point. Scale bar – 2μ m

Supplementary Material

Supplementary Figure 6. EGA- and YM201636-treatment decrease colocalization of CpG-ODN2216-FITC with LAMP1/2⁺ compartments in pDCs.

pDCs were pre-incubated with 20 μ M EGA, 1 μ M YM201636, or vehicle and stimulated with 1 μ M CpG-ODN2216-FITC. Representative images of colocalization of CpG-ODN2216-FITC with endo-lysosomal marker proteins (EEA1, VAMP3, LAMP2, LAMP1) at 2 hours post-stimulation. Scale bar – 2 μ m

Supplementary Figure 7. EGA and YM201636 do not affect endo-lysosomal acidification.

pDCs were pre-incubated with 20 μ M EGA, 1 μ M YM201636, 1 μ M Bafilomycin A1, or vehicle and stimulated with CpG-ODN2216 for 12 hours. CpG-ODN was washed out and cells were labeled with LysoTracker Deep Red and analyzed by flow cytometry. Data representative from 5 donors analyzed by one-way ANOVA with Tukey multiple comparison test. **P*< 0.05, ***P*< 0.01, for comparison between groups.

Supplementary fuore 1. fundodnes dumized in now cytomotry in this study.					
Antıbody	Clone	Source	Catalog		
Anti-Human HLA-DR	L243	Biolegend	307618		
Anti-Human HLA-DR	G46-6	BD	560651, 561359		
Anti-Human Lineage- 1	Various	BD, Biolegend	340546, 363601		
Anti-Human CD3	UCHT1	BD, Biolegend	555335, 300412		
Anti-Human CD3	Sk7	BD	340440		
Anti-Human CD14	ΜφΡ9	BD	557831		
Anti-Human CD19	HIB19	BD	555415		
Anti-Human CD20	2H7	eBioscience	17-0209-42		
Anti-Human CD56	B159	BD	555518		
Anti-Human CD123	9F5	BD	551065, 563161		
Anti-Human CD123	7G3	BD	560826		
Anti-Human CD11c	B-ly6	BD	560369, 561355, 562393		
Anti-Human IFN α	LT27:295	Miltenyi Biotec	130-092-601, 130-123- 708		
Anti-Human TNF α	Mab11	Biolegend	502932, 502936		
Mouse IgG1 Isotype	MOPC-21	Biolegend	400114, 400158, 400162		

Supplementary Table 1. Antibodies utilized in flow cytometry in this study.

Antibody	tibody Clone Catalog Host Source			
Anti ATE2	FOIAN	18665	Dabbit	CST
Anti - ATTS	L9J4IN	18005	Kabbit	
Anti - p-p65 (\$536)	93H1	3033	Rabbit	CST
Anti - p65	L8F6	6956	Mouse	CST
Anti - p-IKKα/β (S176/S177)	C84E11	2078	Rabbit	CST
Anti - ΙKβa	44D4	4812	Rabbit	CST
Anti - p-Akt (S473)	N/A	9271	Rabbit	CST
Anti - Akt	C67E7	4691	Rabbit	CST
Anti - p-p38 (T180/Y182)	3D7	9215	Rabbit	CST
Anti - p38	N/A	9212	Rabbit	CST
Anti - pSTAT1 (Y701)	58D6	9167	Rabbit	CST
Anti - STAT1	D1K9Y	14994	Rabbit	CST
Anti - IRF7	N/A	4920	Rabbit	CST
HRP - Anti - Mouse IgG	N/A	7076	Horse	CST
HRP - Anti - Rabbit IgG	N/A	7074	Goat	CST

Supplementary Table 2. Antibodies utilized in immunoblotting in this study.

Supplementary Table 5. Antibodies utilized in contocal microscopy in this study.					
Antibody	Clone	Catalog	Host	Source	Dilution
Anti-EEA1	14	610456	Mouse	BD	1:250
Anti-VAMP3	EPR16866	ab200657	Rabbit	Abcam	1:500
Anti-LAMP1	N/A	ab24170	Rabbit	Abcam	1:1000
Anti-LAMP2	H4B4	354301	Mouse	Biolegend	1:500
Rabbit Polyclonal IgG	N/A	LS- C149375	Rabbit	LSBio	1:5000
Mouse IgG1	MOPC-21	400102	Mouse	Biolegend	1:500
Alexa Flour 488 Goat- Anti FITC	N/A	A11096	Goat	ThermoFisher	1:1000
Alexa Flour 568-Goat- Anti-Rabbit IgG	N/A	A11036	Goat	ThermoFisher	1:1000
Alexa Flour 647-Goat- Anti-Mouse IgG	N/A	A21235	Goat	ThermoFisher	1:1000

Supplementary Table 3. Antibodies utilized in confocal microscopy in this study.

Patient	Age	Gender	Ethnicity	SLEDAI - 2k	Clinical Status
1	59	Female	White	8	2
2	39	Female	White	8	2
3	44	Female	White	12	2
4	57	Male	White	12	2
5	63	Female	White	8	2
6	37	Female	White	0	2
7	50	Male	Pacific Islander	7	2

Supplementary Table 4. Information of SLE Patients recruited in this study.

Clinical Status

1: No disease activity, off medications

2: Disease in remission, on medication

3: Disease, relapsing

4: Treatment resistant