Supplementary data:

Figure S1:

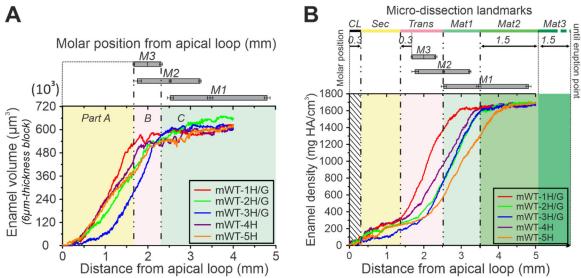


Figure S1: Mineral profile in mandibular incisors of twelve-week-old mice. Enamel incisors from 12-wo mice, raised with different diets, hard chows (H) or a combination of hard chows and soft gel food (H/G), were scanned with high resolution micro-CT (6 μ m pixel) and analyzed to assess (A) the enamel volume (EV) profile (in μ m³) and (B) the mineral density (MD) profile (in mg HA/cm³) from the apex toward the tip. Molar positions, including M1, M2 and M3, were expressed as the Mean \pm SD μ m from the apex. The scan plane was perpendicular to the incisor long axis at mid-M2 and the zone of observation (0 – ~4 to 5 mm) was limited to minimize the impact of incisor curvature on the EV calculation; sec: pure secretory, trans: mixture of small portion of late secretory, the whole transition stage and mostly very early maturation, mat1: early maturation, mat2: middle maturation, mat3: late maturation/protection, mWT: male wild-type mice, CL: cervical loop.

Table S1: List of mice used.

Mice source	mWT C57BL/6J	mWT C57BL/6J							
	in-bred at U. of Pittsburgh	ordered from Jackson lab							
Fed with	Mixed hard chow and gel food	Only hard chow							
Mice used for micro-CT and histology staining (n=27)									
Step 1: Compare enamel densification profile of in-bred mice and commercial mice.									
12-wo	3 2								
16-wo	2 2								
Step 2: Analyze enamel densification profile and amelogenesis of in-bred mice.									
2-wo	3	0							
4-wo	5	0							
8-wo	4	0							
24-wo	3	0							
18-mo	3 0								
Mice used for micro-dissection and RNA collection (n=24)									
Step 3: Select a mice age to perform experiment for checking chosen landmarks.									
12-wo	24								
Total of mice used: n=51									
mWT: male wild-type; n: number of mice used; wo: week-old; mo: month-old.									

Table S2: Gene expression level of Amelx, Enam and Odam in incisal dental epithelium of 12-week-old male wild-type mice.

Gene	β-actin				Amelx			Enam				Odam				
mRNA e	xpress	ion lev	rel – R	aw dat	а (Сус	les)										
Replicons	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Sec	21.78	21.52	21.70	21.84	12.09	11.10	10.78	12.82	16.93	16.83	16.90	16.92	18.46	17.92	17.87	19.06
Trans	21.91	21.34	21.40	21.97	15.41	14.12	14.03	14.78	19.98	20.06	20.19	18.96	15.45	15.80	15.76	15.76
Mat1	21.89	21.71	21.94	21.75	19.61	17.67	17.56	21.33	23.98	23.10	23.41	24.94	14.90	14.73	14.90	14.92
Mat2	21.91	21.69	22.06	22.21	20.75	19.45	17.69	18.59	23.58	23.25	24.47	25.02	15.01	14.99	15.19	15.22
Mat3	22.03	21.73	21.96	22.38	19.63	16.41	19.56	20.62	24.92	23.29	25.30	24.51	15.45	14.95	15.15	15.46
mRNA e	xpress	ion lev	el - Re	lative	ratio c	ompar	ed to (3-actin	(times	5)			I.			I.
	N=4			Mean	 I	SD		Mean		SD		Mean		SD		
Sec				553.61		143.00		26.81		2.21		10.56		4.89		
Trans			115.02	5.02 45.00		4.22		2.68		59.52		3.90				
Mat1			7.88	7.88 7.60		0.28 0.13		0.13	0.13		130.30		33.95			
Mat2			5.99	5.99 3.19		0.24		0.09		118.10		24.20				
	Mat3				7.58	.58 6.20		0.30 0.29		116.96		9.49				
Change	of gen	e expr	ession	during	g amel	ogene	sis (se	cretory	set as	s 100%)					
	Sec 100.00						100.00				100.00					
					20.78			15.74			563.64					
Mat1				1.42			1.04			1233.90						
Mat2				1.08			0.90			1118.37						
Mat3				1.37			1.12			1107.58						