

 1

Tox21Enricher-Shiny
Setup Guide

(Last Updated May 25, 2023)

Shiny Instance: http://hurlab.med.und.edu/tox21enricher

API Instance: http://hurlab.med.und.edu/tox21enricher-api

GitHub Repository: https://github.com/hurlab/tox21enricher

Copyright 2023 University of North Dakota

All rights reserved.

Junguk Hur, Ph.D.

Department of Biomedical Sciences

University of North Dakota, School of Medicine and Health Sciences

Grand Forks, North Dakota 58202, USA

Email: InformaticsTools@gmail.com

http://hurlab.med.und.edu

mailto:InformaticsTools@gmail.com
http://hurlab.med.und.edu/

 2

Table of Contents
I. Introduction to Tox21Enricher-Shiny .. 3

II. Quick Start.. 4

III. Advanced Setup .. 5

III.1. Tox21Enricher-Shiny Source Code .. 5

III.2. Application Configuration .. 5

III.2.a. Plumber API Configuration ... 5

III.2.b. Shiny Application Configuration .. 6

III.3. Database Access and Specifications .. 7

III.3.a. Getting Copies of the Databases .. 7

III.3.b. Restoring the Databases from the Backups .. 7

III.3.c. Database Tables and Functions ... 8

III.4. Rebuilding the Docker Images .. 12

III.5. Launching the Docker Images with Docker Compose ... 12

IV. Other Utilities .. 13

IV.1. API Demos ... 13

V. Common Issues ... 14

 3

I. Introduction to Tox21Enricher-Shiny
Humans are exposed to tens of thousands of chemicals that are used in daily life,

some at levels that may pose a health risk. There is limited toxicological information for many
of these chemicals, which makes risk assessment difficult or impossible. The United States
Toxicology Testing in the 21st Century (Tox21) program was established to develop more
efficient and human-relevant toxicity assessment methods. The Tox21 program is currently
screening a set of over 10,000 chemicals, the Tox21 10K library, using quantitative high-
throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date,
more than 70 assays have yielded >12 million concentration-response curves by Tox21
researchers. To efficiently apply these data for identifying potential hazardous compounds
and for informing further toxicological testing, the United States National Toxicology Program
(NTP) has developed several web applications (Tox21 Toolbox:
https://ntp.niehs.nih.gov/whatwestudy/tox21/toolbox/index.html), including tools for data
visualization (Tox21 Curve Browser) and exploration (Tox21 Activity Profiler).

One critical usage of this dataset is to perform chemical-relational analysis based on
the patterns of activity across the Tox21 assays and then to use nearest neighbor-based
prediction to infer the toxicological properties of untested chemicals via their association with
tested chemicals. One approach to inferring the specific properties is to perform chemical
annotation enrichment of chemical neighborhoods.

Here, we present Tox21Enricher-Shiny, a web-based chemical annotation
enrichment tool for Tox21 assay data built using the R Shiny framework. Tox21Enricher-
Shiny identifies significantly over-represented chemical biological annotations among sets
of chemicals (neighborhoods), which facilitates the identification of the toxicological
properties and mechanisms in the chemical sets.

https://ntp.niehs.nih.gov/whatwestudy/tox21/toolbox/index.html

 4

II. Quick Start
Docker (https://www.docker.com/) is used to provide a quick way to set up a locally hosted

instance of Tox21Enricher-Shiny. There are three official images, tox21enricher/db,

tox21enricher/api, and tox21enricher/shiny, for the Postgres database server, Plumber

API, and Shiny application components, respectively. Tox21Enricher-Shiny uses Docker

Compose (https://docs.docker.com/compose/compose-file/) to launch containers for all

three images on their own internal network. The following instructions will explain how to

set up an instance of Tox21Enricher-Shiny in full on your own machine.

1. Make sure you have Docker and Docker Compose installed on the host machine

as per the instructions at https://docs.docker.com/engine/install/ for the appropriate

OS on the host machine.

2. Download the zipped archive containing the Docker images and Docker Compose

configuration file at http://hurlab.med.und.edu/tox21enricher-docker.zip.

3. Unzip the archive’s files (docker-compose.yml, tox21enricher_image_db.tar,

tox21enricher_image_api.tar, and tox21enricher_image_shiny.tar) to a directory of

your choosing.

4. From within that directory, run the commands:

• docker load --input tox21enricher_image_db.tar

• docker load --input tox21enricher_image_api.tar

• docker load --input tox21enricher_image_shiny.tar

To restore the images from the .tar files.

5. Also from within that directory (in the same directory as docker-compose.yml)

and after all the images are loaded, run the command: docker-compose up.

6. Wait until the API container displays the messages:

• Running plumber API at http://0.0.0.0:<port>

• Running swagger Docs at

http://127.0.0.1:<port>/__docs__/

After these messages appear, you should be able to safely connect to the API and

Shiny app (by default, the database’s port is not exposed to the host for security

reasons). By default, the API is accessible on port 9990 and the Shiny app is

accessible on port 9991 from the host machine. The ports to use may be

configured in the docker-compose.yml file.

7. Use the command docker-compose down to stop the running containers when

done.

Please refer to the comments in the docker-compose file for additional configuration

information.

For advanced usage, configuration, and setup information, please refer to the rest

of this document.

https://www.docker.com/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/install/
http://hurlab.med.und.edu/tox21enricher-docker.zip

 5

III. Advanced Setup
The recommended method for running and deploying Tox21Enricher-Shiny is to use Docker
as outlined in Section II: Quick Start. This section will detail how to acquire the source code
for Tox21Enricher-Shiny, configure a local instance of the application, and rebuild the Docker
images using user-supplied settings.

III.1. Tox21Enricher-Shiny Source Code
The Tox21Enricher-Shiny code for both the server-side and client-side applications may be
found at https://github.com/hurlab/tox21enricher. Assuming you have cloned the repository
into a folder called “/home/user/tox21enricher/” on your machine, the Postgres database
code can be found in /home/user/tox21enricher/database/, the Plumber API code

can be found in /home/user/tox21enricher/tox21enricher-api/, and the Shiny

application code can be found in /home/user/tox21enricher/tox21enricher/.

III.2. Application Configuration

III.2.a. Plumber API Configuration
Assuming you have cloned the code to /home/user/tox21enricher/, the API’s

configuration file can be found at /home/user/tox21enricher/tox21enricher-

api/config.yml. This configuration file has two namespaces, tox21enricher and

tox21enricher-queue, for the tox21enricher database and the tox21queue database,

respectively. The importance of each of the variables in this configuration file is explained
below:

“tox21enricher” namespace

• host – The name or IP address of the machine where the database is hosted. This
should be set to the host name of the Docker container hosting the Postgres
database (“tox21enricher-db” by default).

• uid – The username of the Postgres user that owns the tox21enricher database
(“tox21enricher_user” by default).

• pwd – The password of the Postgres user that owns the tox21enricher database
(“tox21enricher_pass” by default).

• port – The port that the database server is listening on on the internal Docker
network, not the port mapped on the host. By default, this should be set to
“5432”.

• database – The name of the database on the Postgres server. This should be
“tox21enricher”.

• appdir – The location of the server-side project files. This should be wherever you
cloned the repository to (i.e., “/home/user/tox21enricher/”).

• indir – The location of the directory where input files from requests should be stored.

• outdir – The location of the directory where result (output) files from requests should
be stored.

• cores – The number of cores available to use when using multicore processing
(Unavailable on Windows). This is initially set to 4.

• apiHost – The hostname or IP address where the API will be hosted.

https://github.com/hurlab/tox21enricher

 6

• apiPort – The port on the host where the API will be hosted.

• apiSecure – true or false value. Should be true if the host where the API is

located is using HTTPS and false if it is using HTTP.

“tox21enricher-queue” namespace

• host – The name or IP address of the machine where the database is hosted. This
should be set to the host name of the Docker container hosting the Postgres
database (“tox21enricher-db” by default).

• uid – The username of the Postgres user that owns the tox21queue database
(“tox21enricher_queuemanager” by default).

• pwd – The password of the Postgres user that owns the tox21queue database
(“tox21enricher_pass2” by default).

• port – The port that the database server is listening on on the internal Docker
network, not the port mapped on the host. By default, this should be set to
“5432”.

• database – The name of the database on the Postgres server. This should be
“tox21queue”.

• inputMax – The number of concurrent sets that may be accepted as part of a single
request. This value n must be 1 <= n <= 16. If More than 16 sets are specified, the
application will set this value to 16. If less than 1 set is specified, the application will
set this value to 1.

• pvaluedisplay – The numeric value that determines how significant an annotation’s
p-value must be to be included in the result files. This will default to 0.2 if an invalid
value is supplied.

• archivedir – The location of the directory where the zipped archives from old
requests should be saved after they can no longer be accessed from the application.
If blank, results will be deleted instead of archived.

• cleanupTime – The number of hours a transaction will be kept alive in the queue
before being canceled and marked for deletion. Also, the number of hours until the
expiration of a cookie created on the client-side that stores a request’s UUID.

• deleteTime – The number of days (>= 1) before an old transaction is archived. If
set to -1, old request results will always be kept indefinitely and archival is disabled.

III.2.b. Shiny Application Configuration
Assuming you have cloned the code to /home/user/tox21enricher/, the API’s

configuration file can be found at
/home/user/tox21enricher/tox21enricher/config.yml. The importance of

each of the variables in this configuration file is explained below:

• host – The name or IP address of the machine where the Tox21Enricher-Shiny
Plumber API is hosted. This should be set to the host name of the Docker container
hosting the Plumber API (“tox21enricher-api” by default).

• port – The port that the API is listening on on the internal Docker network, not
the port mapped on the host. By default, this should be set to “8000”.

• secure – Should be true or false (without any quotation marks). Set to true if

the API address uses HTTPS. Set to false if it uses HTTP instead.

 7

III.3. Database Access and Specifications
Tox21Enricher-Shiny provides two databases on the same Postgres server: tox21enricher
and tox21queue. tox21enricher stores read-only data relating to the chemicals in the
Tox21 dataset, while tox21queue contains a few writable tables that store information about
submitted requests. This section will detail the specifications of the Tox21Enricher-Shiny
database.

III.3.a. Getting Copies of the Databases
The tox21enricher database may be downloaded in its entirety (with all tables filled and all
necessary functions included) here: http://hurlab.med.und.edu/tox21enricher_db.tar.gz. The
tox21queue database with all tables created (but unpopulated) may be downloaded here:
http://hurlab.med.und.edu/tox21enricher_queue.sql. These data are also linked to on the
project’s GitHub repository: https://github.com/hurlab/tox21enricher.

III.3.b. Restoring the Databases from the Backups

To restore the tox21enricher and tox21queue database from scratch, follow these
instructions:

1. Install a clean instance of Postgres following the instructions at
https://www.postgresql.org/download/. The minimum supported version is Postgres
11.2.

2. Create a new directory to house the data for the database. For example, this
directory can be called “tox21enricher-postgres.”

3. Use Postgres’s initdb utility (https://www.postgresql.org/docs/current/app-
initdb.html) to create a database cluster in the new directory. The command in this
example would be initdb -D /home/user/tox21enricher-postgres/.

4. Start the Postgres server using the pg_ctl command and specifying the previously
initialized database cluster directory: pg_ctl -D /home/user/tox21enricher-

postgres/ -l /home/user/tox21enricher-postgres/logfile start.

5. Create the necessary databases and users using the following commands:

• psql -c "CREATE ROLE <user who has read permission on the

tox21enricher database> WITH LOGIN PASSWORD '<password

for user>';" postgres

• psql -c "CREATE ROLE <user who has read and write

permission on the tox21queue database> WITH LOGIN

PASSWORD '<password for user>';" postgres

• createdb tox21enricher

• createdb tox21queue

In this example, the user that has read permission on the “tox21enricher” database

will be called “tox21enricher_user” and the user that has read and write permission

on the “tox21queue” database will be called “tox21enricher_queuemanager.”

6. Download the database dumps from the links provided above. Decompress the

tox21enricher_db.tar.gz file to retrieve the tox21enricher_db.sql file.

7. Restore the database content to the currently empty databases:

• psql -d tox21enricher -a -f tox21enricher_db.sql

• psql -d tox21enricher -a -f tox21enricher_queue.sql

http://hurlab.med.und.edu/tox21enricher_db.tar.gz
http://hurlab.med.und.edu/tox21enricher_queue.sql
https://github.com/hurlab/tox21enricher
https://www.postgresql.org/download/
https://www.postgresql.org/docs/current/app-initdb.html
https://www.postgresql.org/docs/current/app-initdb.html

 8

8. Finally, set the correct permissions for the “tox21enricher_user” and

“tox21enricher_queuemanager” users using the following Postgres commands:

• psql tox21enricher -c "REVOKE ALL ON ALL TABLES IN

SCHEMA public FROM tox21enricher_user;"

• psql tox21queue -c "REVOKE ALL ON ALL TABLES IN SCHEMA

public FROM tox21enricher_user;"

• psql tox21enricher -c "REVOKE ALL ON ALL TABLES IN

SCHEMA public FROM tox21enricher_queuemanager;"

• psql tox21queue -c "REVOKE ALL ON ALL TABLES IN SCHEMA

public FROM tox21enricher_queuemanager;"

• psql tox21enricher -c "GRANT SELECT ON ALL TABLES IN

SCHEMA public TO tox21enricher_user;"

• psql tox21queue -c "GRANT SELECT, INSERT, UPDATE ON ALL

TABLES IN SCHEMA public TO tox21enricher_queuemanager;"

III.3.c. Database Tables and Functions

“tox21enricher” database tables and functions

9. annotation_class

Name Type Constraints

annoclassid INTEGER NOT NULL, AUTO
INCREMENT,
PRIMARY KEY

annoclassname VARCHAR(50) NOT NULL

firsttermid INTEGER NOT NULL

lasttermid INTEGER NOT NULL

numberoftermids INTEGER NOT NULL

baseurl VARCHAR(255) NOT NULL

annotype VARCHAR(100)

annogroovyclassname VARCHAR(100)

annodesc VARCHAR(7000)

networkcolor VARCHAR(11)

10. annotation_detail

Name Type Constraints

annotermid INTEGER NOT NULL, AUTO
INCREMENT, PRIMARY KEY

annoclassid INTEGER NOT NULL, FOREIGN KEY
REFERENCES
annotation_class(annoclassid)

annoterm VARCHAR(7000) NOT NULL

11. annoterm_pairwise

Name Type Constraints

pairwise INTEGER NOT NULL, AUTO INCREMENT,
PRIMARY KEY

term1uid INTEGER NOT NULL

 9

term2uid INTEGER NOT NULL

term1size INTEGER NOT NULL

term2size INTEGER NOT NULL

common INTEGER NOT NULL

union INTEGER NOT NULL

jaccardindex DOUBLE NOT NULL

pvalue DOUBLE NOT NULL

qvalue DOUBLE NOT NULL

12. chemical_detail

Name Type Constraints

casrnuid INTEGER NOT NULL, AUTO
INCREMENT, PRIMARY
KEY

casrn VARCHAR(15) NOT NULL

testsubstance_chemname VARCHAR(500) NOT NULL

molecular_formular VARCHAR(50)

iupac_name VARCHAR(1000)

inchis VARCHAR(1000)

inchikey VARCHAR(30)

smiles VARCHAR(600)

smiles_qsar_ready VARCHAR(600)

dtxsid VARCHAR(20)

stoichiometric_ratio VARCHAR(10)

cid VARCHAR(20)

mol_formula VARCHAR(200)

mol_weight DOUBLE

dtxrid VARCHAR(20)

13. fps_2

Name Type Constraints

casrn VARCHAR(15)

torsionbv BFP

mfp2 BFP

ffp2 BFP

14. mols_2

Name Type Constraints

casrn VARCHAR(15)

m MOL

cyanide INTEGER

isocyanate INTEGER

aldehyde INTEGER

epoxide INTEGER

15. term2casrn_mapping

Name Type Constraints

term2casrnmappinguid INTEGER NOT NULL, AUTO
INCREMENT,
PRIMARY KEY

 10

annotermid INTEGER NOT NULL

annoclassid INTEGER NOT NULL

casrnuid INTEGER NOT NULL

16. get_mfp2_neighbors (this is a function added on top of those in the RDKit Postgres
cartridge by default)

Description

CREATE OR REPLACE FUNCTION public.get_mfp2_neighbors(smiles text)
 RETURNS TABLE(casrn character varying, m character varying, similarity
double precision, cyanide integer, isocyanate integer, aldehyde integer,
epoxide integer)
 LANGUAGE sql
 STABLE
AS $function$
select casrn,mol_to_smiles(m)::character
varying,tanimoto_sml(morganbv_fp(mol_from_smiles($1::cstring)),mfp2) as
similarity,cyanide,isocyanate,aldehyde,epoxide
from fps_2 join mols_2 using (casrn)
where morganbv_fp(mol_from_smiles($1::cstring))%mfp2
order by morganbv_fp(mol_from_smiles($1::cstring))<%>mfp2;
$function$

 11

“tox21queue” database tables

17. queue

Name Type Constraints

mode VARCHAR(15)

uuid VARCHAR(50) NOT NULL, PRIMARY
KEY

annoselectstr VARCHAR(1500)

cutoff INTEGER

finished INTEGER DEFAULT 0

index INTEGER NOT NULL, AUTO
INCREMENT

error VARCHAR(500)

cancel INTEGER NOT NULL, DEFAULT 0

lock INTEGER NOT NULL, DEFAULT 0

18. status

Name Type Constraints

step INTEGER NOT NULL, DEFAULT 0

uuid VARCHAR(50) NOT NULL, FOREIGN
KEY REFERENCES
queue(uuid), ON
DELETE CASCADE

setname VARCHAR(500)

19. transaction

Name Type Constraints

original_mode VARCHAR(15)

mode VARCHAR(15) NOT NULL

uuid VARCHAR(40) NOT NULL, PRIMARY
KEY

annotation_selection_string VARCHAR(1000)

cutoff INTEGER NOT NULL

input VARCHAR

original_names VARCHAR

reenrich VARCHAR

colors VARCHAR

timestamp_posted VARCHAR(50) NOT NULL, DEFAULT
CURRENT_DATE

timestamp_started VARCHAR(50) DEFAULT ’not started’

timestamp_finished VARCHAR(50) DEFAULT ’incomplete’

cancel INTEGER NOT NULL, DEFAULT 0

reenrich_flag INTEGER NOT NULL, DEFAULT 0

casrn_box VARCHAR

delete INTEGER NOT NULL, DEFAULT 0

pvalue TEXT

 12

III.4. Rebuilding the Docker Images
To rebuild the Docker images from source, consult the file
docker_build_instructions.txt in the main project directory. Open a terminal and

navigate to the main project directory and run each of the following commands to build the
corresponding image:

Build the tox21enricher/db (Postgres server) image
cd database && docker build -t tox21enricher/db -f Dockerfile . --

progress=plain --no-cache \

--build-arg USER_USERNAME='user' \

--build-arg USER_PASSWORD='password' \

--build-arg POSTGRES_DATABASE_USERNAME='tox21enricher_user' \

--build-arg POSTGRES_DATABASE_PASSWORD='tox21enricher_pass' \

--build-arg POSTGRES_QUEUE_USERNAME='tox21enricher_queuemanager' \

--build-arg POSTGRES_QUEUE_PASSWORD='tox21enricher_pass2'

You must define certain arguments in the command to properly build the image:

• USER_USERNAME: the username of the user who will own and run the Postgres
server.

• USER_PASSWORD: the password of the user defined above.

• POSTGRES_DATABASE_USERNAME: the username of the Postgres user who will
have read-only access on the “tox21enricher” database ONLY.

• POSTGRES_DATABASE_PASSWORD: the password of the user defined above.

• POSTGRES_QUEUE_USERNAME: the username of the Postgres user who will
have read/write access on the “tox21queue” database ONLY.

• POSTGRES_ QUEUE _PASSWORD: the password of the user defined above.

Build the tox21enricher/api (Plumber API) image
cd tox21enricher-api && docker build -t tox21enricher/api -f

Dockerfile . --progress=plain --no-cache \

--build-arg USER_USERNAME='user' \

--build-arg USER_PASSWORD='password'

You must define certain arguments in the command to properly build the image:

• USER_USERNAME: the username of the user who will own and run the API process.

• USER_PASSWORD: the password of the user defined above.

Build the tox21enricher/shiny (Shiny server) image
cd tox21enricher && docker build -t tox21enricher/shiny -f

Dockerfile . --progress=plain --no-cache

III.5. Launching the Docker Images with Docker Compose
After the images are finished rebuilding, open a terminal and navigate to the main project
directory (the same directory as docker-compose.yml) and run the command docker-

compose up to start containers using the newly built images. Use the command docker-

compose down to stop the running containers when done.

 13

IV. Other Utilities

IV.1. API Demos
Examples for API usage relating to the headless submission of requests, can be found in
the <project_root>/demos/ directory.

 14

V. Common Issues
Both the client and server code for Tox21Enricher-Shiny are still in continued development,
so there are likely issues that may arise when trying to either perform certain tasks or set up
the application. Known bugs in the code and planned features are documented on the
project’s GitHub repository at: https://github.com/hurlab/tox21enricher/issues.

END OF THE SETUP GUIDE

https://github.com/hurlab/tox21enricher/issues

