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1. Exact variance under global null

Let p0w be the p-value in the wth test under the global null, treated as a random variable.
Then we have:

Var
(
θ̂0
)

= Var

(
W∑
w=1

1
{
p0w < α

})

=
W∑
w=1

Var
(
1
{
p0w < α

})
+ 2

∑
1≤i<j≤W

Cov
(
1
{
p0i < α

}
, 1
{
p0j < α

})
= Wα (1− α) + 2

∑
1≤i<j≤W

E
[
1
{
p0i < α, p0j < α

}]
− E

[
1
{
p0i < α

}]
E
[
1
{
p0j < α

}]
= Wα (1− α) + 2

∑
1≤i<j≤W

[
P
(
p0i < α, p0j < α

)
− α2

]

2. Justification of Algorithm 1

In Theorem 5 below, we show that Algorithm 1 satisfies Assumption 1, as given in the main
text. The development of the proof is structured as follows. We make a regularity assumption
(Assumption 2) and define how we will metrize convergence of the resampled test statistics
(Definition 2). We bound the distance metric for certain types of random vectors (Lemma 1),
in turn allowing us to bound the distance between the estimated sampling distribution in the
resamples and the true sampling distribution to which the former should converge (Theorem
3). Using the latter bound, a triangle inequality argument, and convergence results regarding
each term of the triangle inequality (Lemmas 2 and 3), we show the needed convergence
result for the coefficient estimates (Theorem 4) and finally for the test statistics (Theorem 5).

First, assume the following regularity condition on the design matrix, which will later be
relevant for the convergence of the coefficient estimates:

Assumption 2 (Regularity condition). Suppose without loss of generality that the regression
covariate of interest is X2. Correspondingly, let B ∈ RN×1 be the transposed second row of
(X ′X)−1X ′, or equivalently the first column of X(X ′X)−1. (More generally, if the covariate
of interest is the ith variable in the design matrix, then B is defined as the ith row or column.)
Assume that for some constant k > 0:

N ·B′B P−−−→
N→∞

k
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⇔ N

N∑
n=1

[(X ′X)−1X ′]22n
P−−−→

N→∞
k

where [(X ′X)−1X ′]2n denotes a matrix entry.

This assumption holds under the following sufficient conditions. Heuristically, these state
that, for each regression model, the asymptotic standard errors of all p regression coefficients
are finite (A1), that the covariates have finite expectations and are not completely collinear
(A2), and that the regression model does not fit perfectly (A3).

Proposition 1 (Sufficient conditions). Let Iij denote an entry of the expected Fisher infor-
mation matrix for an individual observation in the wth regression. Then Assumption 2 holds
if, for all w:

Iii > 0 ∀ i ∈ {1, · · · , p} (A1)

E[XniXnj] <∞ ∀ i, j ∈ {1, · · · , p} (A2)

σ2
w > 0 (A3)

Proof of Proposition 1. Let γ̂iw be the ith coefficient estimate in the wth regression, such that
γ̂2w = β̂w, the estimate of interest. Thus, let α̂w = [γ̂1w, β̂w, γ̂3w, · · · , γ̂pw]′ be the p-vector of
estimates in the wth regression. Denote a pairwise covariance Covij = Cov (γ̂iw, γ̂jw), and
similarly denote a pairwise correlation as ρij. Then the estimated covariance of β̂w with γ̂iw
is:

Ĉov2i = ρ̂2i · ŜE
(
β̂w

)
· ŜE (γ̂iw)

= ρ̂2i ·
1√
N Î22

· 1√
N Îii

(1)

With the left-hand side of Assumption 2 in view, we have:

(X ′X)
−1

=
1

σ̂2
w


Ĉov11 · · · Ĉov1p
Ĉov21 · · · Ĉov2p

...
...

Ĉovp1 · · · Ĉovpp


[(X ′X)−1X ′]2n =

1

σ̂2
w

[
Ĉov21 · · · Ĉov2p

][
Xn1 · · ·Xnp

]′

N
N∑
n=1

[(X ′X)−1X ′]22n = N
N∑
n=1

(
p∑
i=1

1

σ̂2
w

Ĉov2iXni

)2
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= N
1

σ̂4
w

N∑
n=1

(
p∑
i=1

p∑
j=1

Ĉov2iĈov2jXniXnj

)

= N
1

σ̂4
w

p∑
i=1

p∑
j=1

Ĉov2iĈov2j
N∑
n=1

XniXnj

Applying Equation (1) yields:

=
1

σ̂4
w

p∑
i=1

p∑
j=1

ρ̂2i ρ̂2j
1

Î22
√
ÎiiÎjj

· 1

N

N∑
n=1

XniXnj

P−−−→
N→∞

1

σ4
w

p∑
i=1

p∑
j=1

ρ2i ρ2j
1

I22
√
IiiIjj

E[XniXnj]

If the sufficient conditions (A1)–(A3) above are fulfilled, this is a finite constant, as required.

We will consider the validity of the bootstrap in terms of convergence on the Mallows-
Wasserstein metric, a conventional choice that is defined as follows (DasGupta, 2008; Freedman,
1981).

Definition 2 (Mallows-Wasserstein metric). Let GA and GB be arbitrary marginal distri-
bution functions for random vectors A ∈ RW and B ∈ RW , respectively. Then a form of
Mallows-Wasserstein distance between GA and GB is the infimum, taken over all possible
joint distributions for (A,B) such that A ∼ GA and B ∼ GB marginally, of the expected L2

distance between A and B:

d2 (GA, GB) := inf
A∼GA
B∼GB

E
[
||A−B||2

]1/2
We proceed to prove that the residual-resampling bootstrap is consistent with respect

to the Mallows-Wasserstein metric in a development roughly following those of Freedman
(1981) and Bickel & Freedman (1981), who considered the asymptotic validity of residual
resampling in recovering the sampling distribution of a p-vector of coefficient estimates from
a single multiple linear regression model. Here, we extend this work to consider the sampling
distribution of β̂W . We first establish a lemma bounding the Mallows-Wasserstein distance
between the distributions of two random vectors constructed as products of different random
matrices with a single fixed vector.

Lemma 1. Let C∗ and D∗ ∈ RW×N be random matrices from a specific joint distribution,
and let B ∈ RN×1 be a fixed vector. Let GC and GD be the resulting marginal distribution

4



Supplement

functions of the vectors C∗B and D∗B ∈ RW×1, respectively. Then:

d2 (GC , GD)2 ≤ tr
{
BB′ · E

[
(C∗ −D∗)′(C∗ −D∗)

]}
Proof. First note that d2 (GC , GD)2 is the infimum of the expectation over all possible joint
distributions with marginals GC and GD, whereas the quantity E

[
||C∗B −D∗B||2

]
is the

expectation for a particular such joint distribution (i.e., the one giving rise to C∗B and D∗B).
We therefore have the inequality:

d2 (GC , GD)2 ≤ E
[
||C∗B −D∗B||2

]
= E

[
tr{(C∗B −D∗B)︸ ︷︷ ︸

W×1

(C∗B −D∗B)′︸ ︷︷ ︸
1×W

}
]

= E
[
tr{(C∗ −D∗)︸ ︷︷ ︸

W×N

BB′︸︷︷︸
N×N

(C∗ −D∗)′︸ ︷︷ ︸
N×W

}
]

= E
[
tr{BB′(C∗ −D∗)′(C∗ −D∗)︸ ︷︷ ︸

N×N

}
]

= tr
{
E
[
BB′(C∗ −D∗)′(C∗ −D∗)

]}
= tr

{
BB′ · E[(C∗ −D∗)′(C∗ −D∗)︸ ︷︷ ︸

N×N

]
}

The next theorem bounds the distance between the true sampling distribution of the
estimated coefficients and the estimated sampling distribution in the resamples in terms of
the distance between the sampling distribution of the true errors and the resampled residuals.

Theorem 3. Let F denote the distribution function of the true errors for the W regression
models, (εn1, · · · , εnW ), and let F̂N denote the empirical distribution function of the residuals,
which is used to approximate F in Algorithm 1. Let Ψ(F ) denote the distribution of the
standardized coefficient estimates,

√
N
(
β̂W − βW

)
, that are constructed as a function of

the true error distribution; Ψ(F ) therefore represents the true sampling distribution to which
a valid bootstrapped sampling distribution must converge. In contrast, let Ψ(F̂N) be the
distribution of the standardized coefficient estimates in the resamples,

√
N
(
β̂W (j) − β̂W

)
, in

which the empirical distribution of the residuals is used to approximate the true distribution.
As in Assumption 2, let B ∈ RN×1 be the transposed second row of (X ′X)−1X ′. Then:

d2

(
Ψ(F ),Ψ(F̂N)

)2
≤ N · tr{BB′} · d2

(
F, F̂N

)2
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Proof. Let U ′w ∈ R1×N = [U1w, · · · , UNw] such that (Un1, · · · , UnW ) ∼ F and:

C ∈ RW×N =

— U ′1 —
...

— U ′W —

 =


U11 ... UN1

U12 ... UN2

...
...

U1W ... UNW


In general for multiple regression, we have β̂ − β = (X ′X)−1X ′ε. Thus, we can express Ψ(F )

as the distribution of the W -vector:

√
N
(
β̂W − βW

)
=
√
N


[
(X ′X)−1X ′U1

]
2...[

(X ′X)−1X ′UW
]
2

 =
√
N

 U
′
1B
...

U ′WB

 =
√
N · CB

whose wth element pertains to the regression coefficient for X2 in the wth regression. Let D
be the counterpart of C with

(
Ûn1, · · · , ÛnW

)
∼ F̂N in place of (Un1, · · · , UnW ).

In view of Lemma 1, note that the entries of the matrix (C −D)′(C −D) ∈ RN×N are:

[(C −D)′(C −D)]kj =
W∑
w=1

[(C −D)′]kw[C −D]wj

=
W∑
w=1

[C −D]wk[C −D]wj

=
W∑
w=1

(
Ukw − Ûkw

)(
Ujw − Ûjw

)

We have E
[ (
Ukw − Ûkw

)(
Ujw − Ûjw

) ]
= Cov

(
Ukw − Ûkw, Ujw − Ûjw

)
, but for all k 6= j,

the covariance is 0 because the observations are independent. Thus, letting IN denote the
N ×N identity matrix, we have that E[(C −D)′(C −D)] is a diagonal matrix such that:

E[(C −D)′(C −D)] = IN · E
[ W∑
w=1

(
Ujw − Ûjw

)2 ]
(2)

which holds for any observation j because they are identically distributed. In order to apply
Lemma 1, we now restrict attention to a special choice of C and D. First note that, by
definition:

d2

(
F, F̂N

)2
= inf

(Uj1,··· ,UjW )∼F
(Ûj1,··· ,ÛjW )∼F̂N

E
[ W∑
w=1

(
Ujw − Ûjw

)2 ]
(3)
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Now let C∗ ∈ RW×N and D∗ ∈ RW×N be a pair of random matrices constructed using
random vectors (Uj1, · · · , UjW ) and

(
Ûj1, · · · , ÛjW

)
that follow the infimum-attaining joint

distribution in Equation (3); that is, such that:

E[(C∗ −D∗)′ (C∗ −D∗)] = IN · d2
(
F, F̂N

)2
per the representations in Equations (2) and (3). (Such a choice exists by Bickel & Freedman
(1981)’s Lemma 8.1.) The result then follows immediately from applying Lemma 1, setting
GC = Ψ (F ), GD = Ψ

(
F̂N

)
, and B,C∗, and D∗ as defined above and pulling the scalar

√
N

outside the squared distance.

Next, to apply the bound in Theorem 3, we will first bound the term on the right-hand
side using a triangle inequality, which applies because d2(·, ·) is a metric (Bickel & Freedman,
1981). To this end, let FN denote the unobserved empirical distribution function of the true
error vector, εW . Then we have the following triangle inequality:

d2

(
F̂N , F

)
≤ d2

(
F̂N , FN

)
+ d2 (FN , F ) (4)

The first term on the right-hand side relates the empirical distribution of the residuals to
the empirical distribution of the true errors (which are both discrete distributions taking N
values); the second term relates the latter empirical distribution to the true error distribution
(which is continuous). The next two lemmas bound the terms on the right-hand side of
Equation (4); we will later use them to bound the left-hand side.

Lemma 2. For the expectation of the first term on the right-hand side of Equation (4):

E
[
d2

(
F̂N , FN

) ]
−−−→
N→∞

0

Proof. As in Definition 2, let U ∼ F̂N and V ∼ FN be arbitrary random variables in RW that
follow the empirical marginal distributions of the residuals and of the true errors. Denote
their elements (U1, · · · , UW ) and (V1, · · · , VW ). Let (U∗, V ∗) be the special choice of (U, V )

that follow not only the marginal empirical distributions F̂N and FN , but also the empirical
joint distribution of the residuals and the true errors. Then:

d2

(
F̂N , FN

)2
:= inf

U∼F̂N
V∼FN

E
[
||U − V ||2

]
≤ E

[
||U∗ − V ∗||2

]
because (U∗, V ∗) represents a choice of a single element from the set over which the infimum
is taken. Expressing the right-hand side as the expectation of the joint empirical cumulative

7



Supplement

distribution function:

=
1

N

N∑
n=1

W∑
w=1

(ε̂nw − εnw)2︸ ︷︷ ︸
||·||2 of a W -vector

=
1

N

W∑
w=1

N∑
n=1

(ε̂nw − εnw)2︸ ︷︷ ︸
||·||2 of an N -vector

=
1

N

W∑
w=1

||ε̂w − εw||2

The interchange of summations is used to express W norms involving residuals from different
regressions, summed over N observations, as N norms involving residuals of observations
within a regression, summed over W regressions. Taking expectations and using Freedman
(1981)’s Eq. (2.2), this implies:

E
[
d2

(
F̂N , FN

)2 ]
=

p

N

W∑
w=1

σ2
w

−−−→
N→∞

0

By Jensen’s inequality:

E
[
d2

(
F̂N , FN

) ]
−−−→
N→∞

0

Lemma 3. Regarding the the second term on the right-hand side of Equation (4), we have:

d2 (FN , F )
P−−−→

N→∞
0

Proof. Letting PN denote an empirical probability, FN can be expressed as:

PN (εn1 ≤ c1, · · · , εnW ≤ cW ) =
1

N

N∑
n=1

1
{
εn1 ≤ c1, · · · , εnW ≤ cW

}
A.S.−−−→
N→∞

P (εn1 ≤ c1, · · · , εnW ≤ cW )
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with the last line following from the Strong Law of Large Numbers (SLLN). Thus, FN
A.S.−−−→
N→∞

F .

Also by the SLLN,
∫
||x||p FN (dx)

A.S.−−−→
N→∞

∫
||x||p F (dx) because the left-hand side is a sample

average whereas the right-hand side is its expectation. These two results immediately imply
Condition (a) of Bickel & Freedman (1981)’s Lemma 8.3, which yields d2 (FN , F )2

P−−−→
N→∞

0

and hence the desired result.

Theorem 4. The residual bootstrap is weakly consistent under the Mallows-Wasserstein
metric for the OLS coefficient estimates (Definition 29.2 of DasGupta (2008)); that is:

d2

(
Ψ(F ),Ψ(F̂N)

)
P−−−→

N→∞
0

Proof. Combining Theorem 3 with the triangle inequality in Equation (4) and observing that
tr{BB′} =

∑N
n=1B

2
N ≥ 0 yields:

d2

(
Ψ(F ),Ψ(F̂N)

)
≤
√
N · tr{BB′} ·

(
d2

(
F̂N , FN

)
+ d2 (FN , F )

)
The term

√
N · tr{BB′} P−−−→

N→∞
k by Assumption 2 because BB′ is scalar. By Markov’s

inequality, the convergence in mean of Lemma 2 implies that d2
(
F̂N , FN

)
P−−−→

N→∞
0. Last, by

Lemma 3, d2 (FN , F )
P−−−→

N→∞
0, so the desired result holds.

The next theorem uses the above result regarding convergence of the resampling-based
coefficient estimates to establish convergence of the test statistics.

Theorem 5. Algorithm 1 fulfills Assumption 1 (main text); namely:

T (j) D−−−→
N→∞

T 0

Proof. By Bickel & Freedman (1981)’s Lemma 8.3, Theorem 4 implies that

√
N
(
β̂W (j) − β̂W

)
D−−−→

N→∞

√
N
(
β̂W − βW

)
By Freedman (1981)’s Theorem 2.2, each σ̂(j)

w
P−−−→

N→∞
σw. The desired result then follows from

the multivariate Slutsky’s Theorem.

3. Proof of Theorem 1

Define the r-family of “rejection sets” as all possible configurations of the W test statistics
that lead to r rejections:

Ar =
{

(A1, · · · , AW ) ∈ RW : (T1 ∈ A1, · · · , TW ∈ AW ) ⇒ θ̂ = r
}
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Consider the limiting distribution of θ̂(j):

lim
N→∞

P
(
θ̂(j) = r

)
= lim

N→∞
P

(
W∑
w=1

1
{
T (j)
w > cw,α

}
= r

)
= lim

N→∞

∑
(A1,··· ,AW )∈A

P
(
T

(j)
1 ∈ A1, · · · , T (j)

W ∈ AW
)

=
∑

(A1,··· ,AW )∈A

P
(
T 0
1 ∈ A1, · · · , T 0

W ∈ AW
)

= P
(
θ̂0 = r

)
where the second equality follows from Assumption 1 (main text).

4. Proof of Theorem 2

The probability of obtaining more than f false positives across tests at level α is:

P

(∑
w∈K′

1{Tw > cw,α} > f

∣∣∣∣∣ H0,w holds for exactly w ∈ K′
)

By subset pivotality, the conditioning statement can be expanded to include the hypotheses
outside K′, such that the global null holds:

= P

(∑
w∈K′

1{Tw > cw,α} > f

∣∣∣∣∣ H0,w holds ∀ w ∈ W

)

Conditional on the global null, we have K′ =W ; hence:

= P

(∑
w∈W

1{Tw > cw,α} > f

∣∣∣∣∣ H0,w holds ∀ w ∈ W

)
= P

(
θ̂ > f

∣∣∣ H0,w holds ∀ w ∈ W
)

= P
(
θ̂0 > f

)
Choosing f = θhi, the above equality becomes:

P

(∑
w∈K′

1{Tw > cw,α} > θhi

∣∣∣∣∣ H0,w holds ∀ w ∈ K′
)

= P
(
θ̂0 − θhi > 0

)
. 0.05
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The asymptotic bound holds by Theorem 1 in the main text. The left-hand side represents
the probability of obtaining more than θhi false positives under any configuration of true
and false hypotheses, (H0,1, · · · , H0,W ), because K′ is simply the arbitrary subset of W for
which H0,w does hold. The right-hand side represents the probability of observing at least
one excess hit.
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5. Additional results for the applied example

Table S1 displays demographic and childhood family characteristics of the analyzed sample.

Table S1: Demographic and childhood family characteristics of 2, 697 analyzed subjects. a: By
subject’s adolescence, subject’s family had ever been on welfare. b: Ranged from 1 (“a lot
better off” than others) to 7 (“a lot worse off” than others). c: By age 16, subject had
ever lived with an alcoholic.

Characteristic Mean (SD) or %
Age 46.89 (12.35)
Female 53.7%
Race

White 93.3%
Black 3.6%
Other 3.2%

Born in US 95.8%
Mother born in US 90.5%
Father born in US 90.2%
Lived with biological parents 81.1%
Number of siblings 2.92 (1.57)
Highest parental education

Less than high school 25.8%
High school 36.0%
Some college 15.8%
College degree or more 22.5%

Childhood welfarea 5.6%
Subjective SESb 4.07 (1.29)
Residential area

Rural 23.1%
Small town 25.6%
Medium town 12.1%
Suburbs 16.8%
City 18.3%
Moved around 4.1%

Residentially stable 74.1%
Mother smoked 32.6%
Father smoked 62.0%
Lived with alcoholicsc 20.9%
Importance of religion

Continued on next page
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Table S1 – continued
Characteristic Mean (SD) or %

Very important 43.5%
Somewhat important 35.7%
Not very important 16.0%
Not at all important 4.7%
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6. Additional simulation results

The following figures show additional scenarios for scenarios with W = 40 outcomes.

Figure S1: 95% null intervals versus mean rejections in observed datasets (×). Panels: Null and
alternative data-generating mechanisms of original samples. Points and error bars:
Mean θ̂(j) and mean limits of null intervals with tests at α = 0.01 (yellow) or at α = 0.05
(red).
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Figure S2: Power of global tests based on existing FWER-control procedures and on the number of
rejections. “Global (alpha=0.01)” and “Global (alpha=0.05)”: proposed methods. The
final panel represents Type I error under the global null.
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Figure S3: Number of rejected null hypotheses at familywise-controlled αW = 0.05 based on existing
FWER-control procedures and on the excess hits. “Global (alpha=0.01)” and “Global (al-
pha=0.05)”: proposed methods. Red dashed line: Actual number of false null hypotheses
(q ×W ).
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6.1. Comparison of p-values adjusted by existing methods

We performed a rudimentary visual comparison of p-value adjustments produced by one
naïve method (Holm) and one resampling-based method (Wstep). We generated a single
dataset as in the simulation study with 1 covariate, 100 outcomes, N = 1, 000, ρXY = 0.08

for all outcomes, and ρY Y = 0.25. We chose these parameters to yield a large number of
adjusted p-values < 0.05 for illustrative purposes. Figure S4 plots the 100 p-values adjusted
using the Holm and Wstep methods (obtained by resampling as in the applied example with
B = 500 resamples) and suggests that in this simple simulation, the methods differ little
in their adjustments to p-values near α = 0.05; rather, the differences appear to emerge
primarily for p >> 0.05. We obtained qualitatively similar results when comparing other
pairs of existing methods (not shown).

Figure S4: p-values in a single simulated dataset adjusted by the Holm method versus the Wstep
method. Red dashed lines: α = 0.05 threshold.

7. Introduction to the package NRejections

Here we briefly describe the R package NRejections; note that additional functions, details,
and additional examples are available in the standard R documentation. For OLS models as
described in Section 4.2 of the main text, the null interval, excess hits, and global test can be
conducted by calling a single wrapper function, corr_tests. This function first fits the W
models in the original dataset, adjusting for any user-specified covariates. Then, resamples
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are generated via Algorithm 1 (main text) and used to estimate and return our proposed
metrics, along with estimates and inference from the original sample. Optionally, the global
test can additionally be conducted using any combination of methods in Table 1 (main text).
Below is a minimal example.

# this was run on R version 3.3.3
# and NRejections version 1.0.0

library(NRejections)

# simulate data with 40 outcomes and 1 covariate of interest,
# similarly to simulation study
# 80% of the 40 associations are non-null (correlation strength of 0.08);
# and the others are null
cor = make_corr_mat( nX = 1,

nY = 40,
rho.XX = 0,
rho.YY = 0.15,
rho.XY = 0.08,f
prop.corr = .8 )

d = sim_data( n = 1000, cor = cor )

# may take 5-10 min to run on 8-core personal computer
res = corr_tests( d,

X = "X1",
Ys = names(d)[ grep( "Y", names(d) ) ],
B = 1000,
method = "nreject" )

# main results
res$null.int
res$excess.hits
res$global.test

As described in the Discussion, Algorithm 1 is more broadly applicable to multiple-
testing procedures outside the scope of this paper. For these general applications, the user
could first obtain residuals and point estimates from the original dataset using the function
dataset_result and pass these to resid_resample, which returns matrices of p-values and
test statistics from the resamples. See ?resid_resample for examples.
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