
Supplementary Materials  
Methods  
Statistics of Repeated Measures Spearman’s Rank correlations 

We have twenty participants with forty different conditions. Therefore, the usual correlation analysis is 
not applicable as the data violate the assumption of independence. We followed the suggestions of 
Mohr and Marcon (2005) and Bakdash and Marusich (2017) and used a randomization test (Edgington, 
& Onghena, 2007) to acquire the significance of the correlations. Spearman’s rank correlation was 
utilized to account for the ordinal data. All the analysis codes are available upon request. 

Significance test (p-values) 

The significance of the correlation was tested with the randomization test. The procedure was as 
follows.  

1. Compute the Spearman correlation per participant (with 40 conditions) 
2. Average the Spearman correlation coefficient across participants  
3. Randomly permute the rank within each participant (1,000,000 times) 
4. Compute the mean Spearman correlation coefficient of each randomized set 
5. Count the number of coefficients larger than the originally acquired coefficient 
6. Draw a histogram and fit a Gaussian function to get a probability distribution function (p-values) 

Confidence interval (CI)  

We followed the bootstrapping method utilized in Bakdash and Marusich, 2017 (rmcorr) to obtain 95% 
CIs for mean Spearman’s rank correlation coefficients. There are numerous analytic methods to 
estimate CIs (e.g., Fisher, 1921; Woods, 2007), but the methods are not appropriate for our dataset 
since our data are not parametric. Instead, we used bootstrapping, which does not require distributional 
assumptions and uses resampling to estimate parameter accuracy (Efron & Tibshirani, 1994).  

Here, we resampled the data of each participant 10,000 times (bootstrap samples) and computed the 
mean Spearman correlation coefficient of each resampled data. Then, we constructed an empirical 
sampling distribution of the mean Spearman’s Rank correlation coefficients. We obtained the CIs from 
the empirical sampling distribution (CIemp) and with the percentile bootstrap method (CIpercent; Efron & 
Tibshirani, 1994). As CIemp and CIpercent were comparable, we only presented CIpercent. 
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Models 
Model simulations 

Two model were tested. The first model tests whether the number of direct neighboring 

squares can explain uncrowding. The second model tests whether the number of white pixels 

within the crowding window determine crowding. 

1) Directly connected squares' and flankers' euclidean distance 

Model performance was predicted by the inverse of the averaged Euclidean distance from 

the center square to each of the directly connected square. Therefore, the closer the connected 

square is, the better performance is. The performance 𝑠!  of configuration (condition) i was 

computed as follow.  

𝑠! = 𝑀!      (1: Num_sq) 
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Where 𝑀! ∈ [1, 10] denotes the number of directly connected squares to the center 

square.  For configuration (condition),	𝑖, 𝑗 encodes each element within configuration 𝑖, and 𝑟!(  

and 𝑐!(  encodes row and column numbers from the center; 𝑇! ∈ [15, 24] encodes the number of 

flankers except the directly connected squares (35 −𝑀!) for each configuration (𝑖); the center 

square is annotated as (0,0),	 𝑟!( ∈ [−2, 2] and 𝑐!( ∈ [−3, 3]. We tested three variants of the 

number of directly connected squares model. 1) Num_sq: only the number of squares as the 

predictor; 2) Num_sq_group: the number of squares discounted by the inverse of the sum of 

distances; 3) Num_sq_flankers: minus the number of non-connected square flankers discounted 

by the inverse of the sum of distances.  

2) Pixel-wise euclidean distance 

As a control, we also tested whether flankers' pixel values all over the configuration or 

within a fixed crowding window (1/2 of eccentricity) predict performance, according to a 



traditional view of crowding (pooling). Similar to Eq. 1, the performance  𝑠!  was computed as 

follow. 

𝑠! = 𝑀! × 𝑖𝑑! , 𝑤ℎ𝑒𝑟𝑒		𝑖𝑑! = ∑ "

#*!"
# %+!"

#

'!
(       (4: Pix_n_all) 

𝑜𝑓	𝑤ℎ𝑖𝑐ℎ					 *!
#

,#
+	+!

#

-#
= 1,							𝑎 = "

.
𝑒𝑐𝑐, 𝑏 = "

/
𝑒𝑐𝑐         (5: Pix_n_bouma)       

𝑀!  encodes the number of flanker pixels in configuration (condition) 𝑖, and 𝑥!  and 𝑦!  are 

the pixel positions from the screen center(0,0). The pixel-wise distance measure was computed 

within Bouma's window, which is an ellipse with ½ of eccentricity (𝑎 = 4.5𝑑𝑒𝑔) and the other 

focal point of ¼ eccentricity (𝑏 = 2.25𝑑𝑒𝑔). Three variants of the model were tested; 1) Pix_num: 

only the number of pixels; 2) Pix_n_all: the number of pixels discounted by the inverse of the 

sum of pixel distances; 3) Pix_n_Bouma: same as Pix_n_all only pixcels within the Bouma's 

window.  

3) Model significance test 

We analyzed the predictability of the models using two methods. First, we used LMMs 

which had each of the model estimates as fixed effects. For each LMM, the fixed effect was model 

estimates for each configuration, and each subject was considered as random intercepts.  

Next, we used a leave one out cross validation (LOOCV) method to determine the 

explained variance of participants' performance. We linearly fitted the model estimates to the 

crowding performance of 19 participants behavioral data. Then, we obtained the r squared value 

(explained variance) by using the last participants' data (data points are not included in the linear 

regression). We repeated the compuation 20 times (for each participant), then averaged the r 

squared values from 20 iterations to get the final explained variance of each model. 

 

Model comparisons 



 

 

Supp. Figure 1. Correlations between model estimates and mean crowding levels for each configuration. The y-axis 
shows the mean threshold elevation, and the x-axis is the model estimates for each model (both axes have arbitrary 
units). Each dot represents each configuration, and the color means corresponding Gestalt principles, the same as in 
Figure 4.  

Supp. Figure 1 shows the correlations between the mean performances across the 

participants and model predictions. The correlations between crowding level and the number of 

connected squares and that discounted by the distance showed strong correlation (rnum_sq (38)= 

- 0.50, CI95% = [-0.70, -0.23], pBonf < 0.01; rnum_sq_group (38)= - 0.60, CI95%= [-0.75, -0.33], pBonf < 0.001; 

rnum_sq_flankers (38)= - 0.58, CI95% = [-0.71, -0.23], pBonf < 0.001). However, flanker pixel values, 

regardless of the local crowding window restriction, showed weak correlation (rpix_num (38)= - 

0.05, CI95% = [-0.36, 0.26], p = 0.75; rpix_num_all (38)= -0.02, CI95% = [-0.33,  0.29], p = 0.90; 

rpix_num_bouma (38)= - 0.03, CI95% = [-0.35,  0.29], p = 0.87).  

To examine predictability further, we analyzed the predictability of the models using two 

methods. First, we used LMMs which had each of the model estimates as the fixed effects. We 



found that the number of connected squares and the number of squares with distance discount 

have a significant effect on the crowding level, but not for the number of pixels. For each LMM, 

the fixed effect was model estimates for each configuration, and each participant was considered 

as random intercepts. There were significant fixed effects for the number of directly connected 

square models, but not for the pixel value models (details in Table 1). Although the effects could 

only explain 6.0 % of the variances (𝑟!" , Num_sq_group; for the other models, see Supp. Table 1), 

it was still better than the pixel estimators (0.0 %, Pix_num_bouma). Note that explained 

variances including the random intercept across all the models were comparable, 40% - 45% (𝑟#"). 

This result clearly indicates that none of the models can truly explain crowding and uncrowding, 

there were rather large performance variances across participants and across configurations.  

Supp. Table 1. LMM model likelihood test results. Detailed estimates for each model are in Supp. Table xxx. 

Model Likelihood ratio test Significance (𝒑) Explained variance (𝒓𝟐) 
Num_sq 𝜒"(1) = 57.077 𝑝 < 0.001 𝑟!" = 0.042,				𝑟#" = 0.433 

Num_sq_group 𝜒"(1) = 	83.155 𝑝 < 0.001 𝑟!" = 0.060,				𝑟#" = 0.452 
Num_sq_flankers 𝜒"(1) = 76.264 𝑝 < 0.001 𝑟!" = 0.055,				𝑟#" = 0.447 

Pix_num 𝜒"(1) = 0.602 𝑝 = 0.438 𝑟!" = 0.000,				𝑟#" = 0.390 
Pix_n_all 𝜒"(1) = 0.097 𝑝 = 0.756 𝑟!" = 0.000,				𝑟#" = 0.390 

Pix_n_bouma 𝜒"(1) = 0.157 𝑝 = 0.692 𝑟!" = 0.000,				𝑟#" = 0.390 
 

Next, we tested with the leave one out cross validation (LOOCV) method. Hence, here we 

tested the explained variance of a participants' performance from the other remaining 

participants' performances. We fitted the model estimates to the crowding performance of 19 

participants behavioral data. We obtained an r2 value (explained variance) by using the last 

participants' data (data points are not included in the linear regression). We repeated the 

computation 20 times (for each participant), then averaged the r squared values from 20 

iterations to get the final explained variance of each model. As a result, similarly, despite the low 

correlation, the number of directed squares discounted by their distances could predict the 

crowding level partially (rLOOCV-num_sq
2=0.121, rLOOCV-num_sq_group

2=0.164, rLOOCV-num_sq_flankers
2=0.154), 

whereas pixel values could not (rLOOCV-pix_num
2=0.013, rLOOCV-pix_n_all

2=0.013, rLOOCV-

pix_n_bouma
2=0.015).  

  



Tables 
Parameter estimates of Linear Mixed Effects Models (LMMs) 

Table 2. Estimates from the linear mixed-effects model of the VCrowd task, with the Gestalt principles as 
predictors and individual participants and flanker configurations as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 1.1685 0.221 5.288 
Symmetry - Closure 0.8129 0.2007 4.049 

Symmetry - Continuous 0.2913 0.2007 1.451 
Symmetry - Random 0.3219 0.2539 1.268 

Symmetry - Repetition 0.4807 0.2007 2.395 
 

Table 3. Tukey’s HSD posthoc comparison results  

Fixed Effects Upper bound Lower bound p-value signicance  

closure - symmetry 0.267 1.359 <0.001 *** 
continuous - symmetry -0.255 0.837 0.59  

random - symmetry -0.369 1.012 0.707  
repetition - symmetry -0.065 1.027 0.114  
continuous - closure -1.119 0.076 0.121  

random - closure -1.223 0.241 0.356  
repetition - closure -0.930 0.266 0.551  

random - continuous -0.702 0.763 1  
repetition - continuous -0.409 0.787 0.909  

repetition - random -0.573 0.891 0.976  
 

Table 4. Estimates from the linear mixed-effects model of subjective groupind and segmentation 
measures. Gestalt principles are considered as predictors and individual participants and flanker 
configurations as random intercepts. 

GlobRank 

Fixed Effects β estimate β standard error t-value 

(Intercept) 15.325 1.254 12.225 
Symmetry - Closure 8.775 1.982 4.427 

Symmetry - Continuous 6.187 1.982 3.122 
Symmetry - Random 6.675 2.507 2.662 

Symmetry - Repetition 7.575 1.982 3.822 
 

VStandRate 

Fixed Effects β estimate β standard error t-value 

(Intercept) 3.4 0.1776 19.141 
Symmetry - Closure -0.2813 0.1097 -2.565 



Symmetry - Continuous -0.1844 0.1097 -1.681 
Symmetry - Random -0.175 0.1387 -1.262 

Symmetry - Repetition -0.2313 0.1097 -2.109 
 

GStandRate 

Fixed Effects β estimate β standard error t-value 

(Intercept) 4.1625 0.1635 25.454 
Symmetry - Closure -0.4375 0.1231 -3.553 

Symmetry - Continuous -0.3 0.1231 -2.437 
Symmetry - Random -0.6625 0.1557 -4.254 

Symmetry - Repetition -0.2156 0.1231 -1.751 
 

GGroupRate 

Fixed Effects β estimate β standard error t-value 

(Intercept) 3.9625 0.1681 23.576 
Symmetry - Closure -0.5031 0.1795 -2.803 

Symmetry - Continuous -0.325 0.1795 -1.811 
Symmetry - Random -0.8313 0.227 -3.662 

Symmetry - Repetition -0.4875 0.1795 -2.716 
 

Table 5. Tukey’s HSD posthoc comparison results  

GlobRank 

Fixed Effects Upper bound Lower bound p-value significance 

closure - symmetry 3.383 14.167 < 0.001 *** 
continuous - symmetry 0.795 11.580 0.015 * 

random - symmetry -0.146 13.496 0.058  
repetition - symmetry 2.183 12.967 0.001 ** 
continuous - closure -8.494 3.319 0.753  

random - closure -9.334 5.134 0.933  
repetition - closure -7.107 4.707 0.981  

random - continuous -6.747 7.722 1.000  
repetition - continuous -4.519 7.294 0.968  

repetition - random -6.334 8.134 0.997  
 

VStandRate 

Fixed Effects Upper bound Lower bound p-value significance 

closure - symmetry -0.580 0.017 0.076  
continuous - symmetry -0.483 0.114 0.441  

random - symmetry -0.552 0.202 0.711  



repetition - symmetry -0.530 0.067 0.213  
continuous - closure -0.230 0.424 0.928  

random - closure -0.294 0.506 0.951  
repetition - closure -0.277 0.377 0.994  

random - continuous -0.391 0.410 1.000  
repetition - continuous -0.374 0.280 0.995  

repetition - random -0.456 0.344 0.995  
 

GStandRate 

Fixed Effects Upper bound Lower bound p-value significance 

closure - symmetry -0.772 -0.103 0.003 ** 
continuous - symmetry -0.635 0.035 0.104  

random - symmetry -1.086 -0.239 < 0.001 *** 
repetition - symmetry -0.551 0.119 0.398  
continuous - closure -0.229 0.504 0.844  

random - closure -0.674 0.224 0.648  
repetition - closure -0.145 0.589 0.464  

random - continuous -0.812 0.087 0.179  
repetition - continuous -0.282 0.451 0.970  

repetition - random -0.002 0.896 0.052 . 
 

GGroupRate 

Fixed Effects Upper bound Lower bound p-value significance 

closure - symmetry -0.991 -0.015 0.040 * 
continuous - symmetry -0.813 0.163 0.363  

random - symmetry -1.449 -0.214 0.002 ** 
repetition - symmetry -0.976 0.001 0.051  
continuous - closure -0.356 0.713 0.893  

random - closure -0.983 0.327 0.647  
repetition - closure -0.519 0.550 1.000  

random - continuous -1.161 0.149 0.215  
repetition - continuous -0.697 0.372 0.921  

repetition - random -0.311 0.999 0.605  
 

 



Figures 

 

Supp. Figure 2. Spearman’s Rank coefficient randomization test histogram.  



 

Supp. Figure 3. Pearson correlation r coefficients. Dotted red lines show the boundary for the same Gestalt principle, 
and dotted green lines show the boundary for the same nuanced Gestalt principle. The correlations between the 
same principles were not higher than the correlations across the principles.  



 

Supp. Figure 4. a) GGlobRank, b) VStandRate, c) GStandRate, and d) GGroupRate for each configuration. Each color 
represents each Gestalt principle, as in Fig. 4. 


