
Kusch et al.

Supplementary Material

Supplementary Material Title
Supplementary Note 1 Guidelines Input/Output (I/O) interface
Supplementary Note 2 Guideline for implementation of transfer module
Supplementary Note 3 Detail characterization of the workflow TVB-NEST

Supplementary Tabular 1 Tabular describing the co-simulation
Supplementary Figure 1 Zoom on 1s for the spiking neural network

with regular bursting state
Supplementary Figure 2 Mouse Brain activity for Asynchronous Irregular
Supplementary Figure 3 Mouse Brain activity for Synchronous Irregular
Supplementary Figure 4 Mouse Brain activity for Regular Bursting
Supplementary Figure 5 Detail sequence diagram of the co-simulation
Supplementary Figure 6 Sequence diagram of

the communication protocol with NEST
Supplementary Figure 7 State diagram of NEST wrapper
Supplementary Figure 8 State diagram of transfer components for

interaction with NEST
Supplementary Figure 9 Sequence diagram of the communication protocol

with the wrapper of TVB
Supplementary Figure 10 State diagram of wrapper of TVB modules
Supplementary Figure 11 State diagram of transfer components for

interaction with the wrapper of TVB
Supplementary Figure 12 File organisation of the transformer module
Supplementary Figure 13 State diagram of transfer components which

transform data from one scale to another
Supplementary Figure 14 Structure diagram of the two transfer modules

with the description of each component
Supplementary Figure 15 Class diagram of the transfer modules
Supplementary Figure 16 Communication between components

in the transfer module
Supplementary Figure 17 Details of the performance

with the increase of neurons
Supplementary Figure 18 Details of the performance

with the increase of synchronize time
Supplementary Figure 19 Details of the performance depending on

the number of processes and threads for NEST

Frontiers 31

Kusch et al.

Supplementary Material Title
Supplementary Figure 20 Compare the performance depending on

parallelization strategies of the transformer modules
Supplementary Figure 21 Performance of the co-simulation on one

supercomputer for different number of neurons
Supplementary Figure 22 Performance of the co-simulation on one

supercomputer for different time of synchronization
between simulator

Supplementary Figure 23 Performance of the co-simulation on one
supercomputer for different number
of node for NEST

Supplementary Figure 24 Details of the timer of one run
for the reference configuration

Supplementary Figure 25 Proof of concept of replacing NEST and TVB
by other simulators

Frontiers 32

Kusch et al.

1 SUPPLEMENTARY NOTES

SUPPLEMENTARY NOTE 1| GUIDELINES INPUT/OUTPUT (I/O)
INTERFACE

Before creating the I/O interface, the simulator must be analysed. The objective is to
verify the existence of output and input devices, the paradigm of parallelisation, the tools
for the parallelisation and the properties to keep. This analysis will help to modify the
architecture of the simulator. The modification needs to follow the simulator development
and its maintainability. The last part is the creation of a wrapper to communicate with
the transfer module if required. Two paragraphs will provide further details about how to
transfer data from NEST [1] to TVB [2] and vice versa.

NEST I/O interface

NEST has two types of devices: stimulating and recording devices. These devices
receive or send messages mainly based on spikes times. The parallelisation uses MPI
and/or threading depending on its parametrisation, and it is based principally on event
transfer (spikes between neurons). The critical property to conserve is its scalability. From
this statement, a new interface was implemented into version 3 of NEST and uses MPI
communication. The modification architecture of NEST is creating a specific back end
of the recording and stimulating devices and reformatting input devices to include the
usage of a specific back end. Each back-end uses a particular communication protocol
(see supplementary figures 6), which includes transmitting the NEST state using tags and
transferring data. The transfer module directly uses this interface (see supplementary figures
13).

TVB I/O interface

The simulator engine is a class composed of different classes for the simulation of
Brain network modelling. The I/O interface present in TVB is the ”monitor” classes for
recording and the ”stimulus” classes stimulating. The ”monitor” classes record only the
data in memory and are limited to some recording values. The ”stimulus” classes have the
particularity that the stimulus requires to be defined by an equation at the beginning of the
simulation. For the parallelization paradigm, TVB does not have a strategy of parallelization.
We do not identify specific properties to keep for the optimisation co-simulation.
From these statements, the prototype uses a new monitor that dynamically modifies the
simulator. That means that the new monitor, during its instanciation, modifies the instance
of the simulator to include new functions and parameters used for the co-simulation. The

Frontiers 33

Kusch et al.

new parameter added by this new monitor is an extra buffer to delay the simulated data.
The new functions are the I/O interface. The output recording of the stimulation of the
nodes due a network connections and the input is the state of some nodes. The recording
and the integration of the data from the new I/O interface are based on the usage of some
nodes in the network as proxies. This means that the state of these proxy nodes is defined
by external data and not a mean-field model. The receiving stimulation of these proxy
nodes by the network is recorded and transferred by the new I/O interface. Following the
simulator development and its maintainability, this new monitor is not included in the code
of TVB. The main reason is that it is difficult to maintain and debug dynamic modifications
(it requires instantiation of the object for debugging and the code of the object is in two
files). The current official release of TVB includes a new class of ’co-simulator’, a sub-class
of simulator engine, that implemented the I/O interface.
However, this interface is not enough for communication with the transfer module in
our application because there is a need to communicate data with MPI communication.
A wrapper around this I/O interface is implemented to overcome this requirement(see
supplementary figure 10 for details). A bug present in the implementation of this new
monitor does not take into account the time of synchronisation between the simulator, but it
does not have an impact on the co-simulation dynamic.

SUPPLEMENTARY NOTE 2| GUIDELINE FOR IMPLEMENTATION OF
TRANSFER MODULE

This section focuses on the intention behind the implementation of the transfer modules. In
the future, two types of scientists will improve and use transfer modules. The neuroscientist
or physician will modify it to create new models and adapt them to their scientific questions.
In parallel, computational scientists will work to improve communication speed between
all modules and components. Furthermore, in the future, there will be a need to add other
simulators such as Neuron[19], Arbor[20], Neurolib[26]. The architecture design needs
to simplify the addition of other simulators and other types of data (membrane voltage,
current, ...).
The separation of the neuroscience research and computer science research is done by the
separation of the functions of the transfer module in three components/objects/processes:
two for the I/O interface with simulators and one for transformation functions (see
Supplementary Figure 14). A neuroscientist will principally modify the transformation
components where the meaning of the data transformation is required and important for
his work. A computational scientist will focus on optimising the communication with the

Frontiers 34

Kusch et al.

interface with a simulator, the internal communication and the management of the data flux.
To avoid conflict between this type of research, there is a simple API for receiving
and sending data in each component (see examples of activity diagram of the transfer
components in the Supplementary Figure 16). The only constraint to the neuroscientist is to
respect the buffering of data in the transformation function by releasing the input connection
before accessing the output connection. Moreover, this simple API is implemented
following the abstract factory pattern. This design pattern is chosen to help the comparison
of different implementations of communication and the integration of new simulators.
The API address partially the constraint of the simplification for adding a new simulator
because only one missing part is a component for the interface with the simulator; the rest
can be reused. The other architecture element for this constraint is separating files for each
simulator and encapsulating the interface in an abstract class following a composite pattern.
The second constraint is the simplification of adding a new type of data respected by
the imposition of a convention for data management. This convention comprises four
functions and one Boolean for sending and receiving data. The functions are ”ready for
transfer data?”, ”transfer the data”, ”end of transfer data” and ”release the connection”. The
Boolean contains information about the connection statement from the other side (0:open
or 1:closed).

SUPPLEMENTARY NOTE 3| DETAIL CHARACTERIZATION OF THE
WORKFLOW TVB-NEST

This characterisation is based on the taxonomies proposed in Gomes et al. 2018 [3].
However, this taxonomy is not the best for this workflow because the transformation
modules are not considered. Additionally, one of the hypotheses of this taxonomy is the
presence of an orchestrator, which is not the case for the workflow.

Non-Functional Requirements

• Fault tolerance: No (NEST does not store the previous state and the communication
spike, which creates the impossibility of coming back in the future)

• Configuration reused: Yes (the configuration of each simulator is independent and
defined during the initialisation)

• Performance: Yes and No (the simulator’s scalability and parallelisation are kept, but
there is no modulation of the integration step or signal extrapolation).

• IP Protection: No protection (NEST and TVB do not use protected models.)

Frontiers 35

Kusch et al.

• Parallelism: Yes (the communication use MPI and each simulator is run in individual
processes)

• Distributed: Yes (the workflow keeps the properties of NEST to be simulated in a
distributed way)

• Hierarchy: Yes (the workflow is independent of the model for each simulator and
the transformation function. There is some requirement for the connection between
modules which creates the dependencies.)

• Scalability: No (it is dependent on the simulators)
• Platform independent: Yes and No (it requires some dependence on the platform, but

the usage of docker or singularity can pass it)
• Extensibility: Yes and No (some extra modules such as NESTML or TVB can create

models for each simulator but not a specific extension for the transformation and all
the simulations.)

• Accuracy: No (there are any simulators which provide the errors or the convergence of
the simulations.)

• Open Source: Yes (each simulator is open source, and the workflow is also open source)

Simulator Requirements

Information Exposed

• Frequency of State: No (the frequency of the state for the simulator and the co-
simulation is fixed during the initialisation)

• Frequency of Outputs: No (same as before. Moreover, TVB can have an output
frequency lower than this internal integration frequency)

• Detailed Model: Yes (the code for all the models is available)
• Nominal Values of Outputs: dependent on the output and the models used
• Nominal Values of State: dependent on the model
• I/O Signal Kind: No (there is not a master algorithm but NEST has some internal

statement about the signal communication between devices and nodes.)
• Time Derivative: Output only
• Jacobian: No
• Discontinuity Indicator: No (the transformation modules handles this part)
• Deadreckoning model: No
• Preferred Step Size: No (the step size is fixed at the beginning)

Frontiers 36

Kusch et al.

• Next Step Size: No (there is not an orchestrator for managing the step size and the step
size are fixed)

• Order of Accuracy: No (there is no extrapolation function)
• I/O Causality: Propagation Delay (the delay is used for the parallelization. However

this delay is fixed during the simulation)
• Input Extrapolation: No (there is no extrapolation function)
• State Variables: Values
• Micro-Step Outputs: Yes (TVB and NEST give the output of each micro-step but it can

be modulated)
• Worst Case Execution Time: Yes (the worst case is when the minimum delay is equal

to the micro-time step (see Performance section))

Causality

Causal

Time Constraints

• Analytic Simulation: False (there does no analytic solution to this co-simulation)
• Scaled Real Time Simulation: Fixed for TVB and NEST
• Rollback Support: No (there is no rollback support for NEST and TVB)

Availability

local

Framework Requirements

• Standard: No standard (ad-hock solution)
• Coupling: Input/Output Assignments (Transformation modules between the two

simulators take the role to synchronize the I/O of the simulators)
• Number of Simulation Units: Two simulators
• Domain: Hybrid
• Dynamic structure: No (all the dependency is defined at the beginning)
• Co-simulation Rate: Single (unique size of the synchronization step between simulators

and micro-step is fixed during the simulation)
• Communication Step Size: Fixed

Frontiers 37

Kusch et al.

• Strong Coupling Support: None – Explicit Method (the transformation module contains
the information on the coupling of the simulators)

• Results Visualization: It can be in live or postmortem
• Communication Approach: Jacobi (however, the delays allow the separation of micro-

steps without creating errors)

Additional : characterization of the coupling[4][5]

The previous characterization is focusing more on the technical details but it is missing
the characterization of the transformation modules. For the workflow of TVB-NEST,
the scales are separate in space (micro- and macro-scale). The coupling between the
simulators is a tightly coupled or cyclic coupling using a fixed number of simulators
instance. The workflows allow sequential or parallel execution depending on the number of
initial conditions.

Frontiers 38

Kusch et al.

2 SUPPLEMENTARY TABLES AND FIGURES

2.1 Table

A1 Co-simulator environment
Simulator NEST[1] TVB[6]
Version 3.0 2.0

Integrator method
4th order Runge-
Kutta-Fehlberg

method
Heun method

Integration step size 0.1 ms 0.1 ms
Synchronization time step 2.0 ms
Simulated time 60.0 s
Analyzed time between 42.5 s and 53.5
Type of I/O interface proxy input proxy region

A2 Co-simulator architecture
Reference model The mouse brain with 104 regions
Simulator NEST TVB
Number of simulated

region
2 102

Number of MPI processes 3 1
Number of thread per

process
6 1

Number of random seeds 1
Transfer module NEST to TVB TVB to NEST
number of transfer module 2 2
Number of MPI processes 2 2
Number of threads or

processes
6 6

Number of random seeds 1 1

Frontiers 39

Kusch et al.

B1 NEST : Model Summary
Topology left and right CA1 connected to TVB
Population 2 by regions : excitatory and inhibitory
Connectivity random convergent connection

Neuron Model
adaptive exponential leaky integrate and fire
neurons[7], fixed threshold and fixed absolute
refractory time

Synapse Model conductance-based exponential shape
Plasticity

Input
Independent fixed rate Poisson generator spike
trains to all neurons and spike trains from TVB

Measurement
Voltage, Adaptation Current, Spike Activity and
Model of Local Field Potential signal

B2 NEST : Topology
regions 2 regions (left CA1 and right CA1)
number of neurons by regions N=10000
percentage of inhibitory

neurons
ginh=20%

B3 NEST : Population by regions
Name Elements Size
E aeif cond exp N e = (1-ginh)N = 8000

I aeif cond exp
N i = ginhN =
2000

Pext Poisson generator 1

Iext
spike generator (input
from TVB)

N

Frontiers 40

Kusch et al.

B4 NEST : Neuron Model
Name aeif

Type
adaptive exponential leaky
integrator[7] and fire with

conductance synapse

subtreshold dynamics

Cm
dVm
dt

=− gL(Vm − EL) + gL∆T e
Vm−Vth

∆T

− ge(t)(Vm − Eex)− gi(t)(Vm − Ein)

−W + Ie

τw
dW

dt
=a(Vm − EL)−W

reset condition

For t(f) = {t | Vm(t) >= Vpeak}
• Vm([t(f); t(f) + tref]) = Vreset

• W ([t(f)]) = W ([t(f)]) + b

B5 NEST : Synapse Model
Name cond exp

Type
post-synaptic conductance in the form of

truncated exponentials

Coupling equation

ge(t) =
∑
t
(f)
j

wjexp trunc(t− tj , τex) with wj > 0.0

gi(t) =
∑
t
(f)
j

wjexp trunc(t− tj , τin) with wj < 0.0

exp trunc(t, τ) = e1−
t
τHeaviside(t)

Frontiers 41

Kusch et al.

B6 NEST : Excitatory Neuron Model Parameters

case Asynchronous
Irregular

Synchronous
Regular
bursting

Cm
Capacity of the
membrane

200.0 pF

tref
Duration of refractory
period

5.0 ms

Vreset
Reset value for Vm after
a spike

-64.5 mV -64.5 mV -47.5 mV

EL Leak reversal potential -64.5 mV -64.5 mV -74.0 mV
gL Leak conductance 10.0 nS
∆T Slope factor 2.0 mV

Vpeak
Spike detection
threshold

0.0 mV

a Subthreshold adaptation 0.0 nS

b
Spike-triggered
adaptation

10.0 pA 100.0 pA 50.0 pA

τw
Adaptation time
constant

500.0 ms 500.0 ms 150.0 ms

Vth
Spike initiation
threshold

-50.0 mV

Ie
Constant external input
current

0.0 pA

Eex
Excitatory reversal
potential

0.0 mV

Ein
Inhibitory reversal
potential

-80.0 mV

Vm
Initialization of the
voltage membrane

-64.5 mV -64.5 mV -47.5 mV

W
Initialization of
adaptation current

0.0 pA

Frontiers 42

Kusch et al.

B7 NEST : Inhibitory Neuron Model Parameters

case Asynchronous
Irregular

Synchronous
Regular
bursting

Cm
Capacity of the
membrane

200.0 pF

tref
Duration of refractory
period

5.0 ms

Vreset
Reset value for Vm after
a spike

-65.0 mV -65.0 mV -75.0 mV

EL Leak reversal potential -65.0 mV -65.0 mV -75.0 mV
gL Leak conductance 10.0 nS
∆T Slope factor 0.5 ms

Vpeak
Spike detection
threshold

0.0 mV

a Subthreshold adaptation 0.0 nS

b
Spike-triggered
adaptation

0.0 pA

τw
Adaptation time
constant

1.0 ms

Vth
Spike initiation
threshold

-50.0 mV

Ie
Constant external input
current

0.0 pA

Eex
Excitatory reversal
potential

0.0 mV

Ein
Inhibitory reversal
potential

-80.0 mV

Vm
Initialization of the
voltage membrane

-65.0 mV -65.0 mV -75.0 mV

W
Initialization of
adaptation current

0.0 pA

Frontiers 43

Kusch et al.

B8 NEST : Connectivity between regions
parameter synapses

τex
Rise time of excitatory
synaptic conductance

5.0ms

τin
Rise time of inhibitory
synaptic conductance

5.0ms

Name Source Target Weights Pattern

EE global E E I 1.0

Fixed total number of
connections from one to
another region. The number
of synapses to another region
is A: 1150000, IS: 3000000
and RB: 800000. The delay
(161.6 ms) is defined by the
multiplication of velocity
(3.0 mm/ms) and distance
between regions (53.855
mm). See for more details in
the section TVB: connectivity
because delays and the
weights are extracted from the
connectivity of TVB.

Frontiers 44

Kusch et al.

B9 NEST : Connectivity inside the regions
Name Source Target Weights Pattern

EE E E 1.0

Fixed number of input
synapses (Ne ∗ pconnect : A
and SI 400 = 8000 ∗ 0.05
and RB 40 = 8000 ∗ 0.005).
Neuron can connect to
itself and can have multiple
connections with another
neuron.

EI E I 1.0

Fixed number of input
synapses (Ne ∗ pconnect : A
and SI 400 = 8000 ∗ 0.05
and RB 40 = 8000 ∗ 0.005).
Neuron can have multiple
connections with another
neuron.

IE I E g

Fixed number of input
synapses (Ni ∗ pconnect : A
and SI 100 = 2000 ∗ 0.05
and RB 10 = 2000 ∗ 0.005).
Neuron can have multiple
connections with another
neuron. The weight equals
10.0 for A, 5.0 for SI and 10.0
for RB.

II I I g

Fixed number of input
synapses (Ni ∗ pconnect : A
and SI 100 = 2000 ∗ 0.05
and RB 10 = 2000 ∗ 0.005).
Neuron can connect to
itself and can have multiple
connections with another
neuron. The weight equals
10.0 for A, 5.0 for SI and 10.0
for RB.

Frontiers 45

Kusch et al.

B10 NEST : Input
Poisson generator

equation p(n) =
λn

n!
exp(−λ)

implementation
algorithm

Ahrens and Dieter 1982

case A IS RB
excitatory firing rate
λex

1.0 0.0 0.0

inhibitory firing rate
λin

0.0 0.0 0.0

weight connection 1.0 1.0 1.0
Spike generator

Proxy for the input of the region simulated with TVB. (see
the section transformation TVB to NEST)

Frontiers 46

Kusch et al.

B11 NEST : Measurement (part 1)

state variable
Voltage membrane,
adaptation current

precision 0.1

number of
recorded
neurons

10 excitatory and
10 inhibitory

spike time precision 0.1 ms
number of
recorded
neurons

all

spike activities

raster plot precision 0.1 ms
histogram of

instantaneous firing
rate

bins 0.1ms

simple moving
average

windows size T (20ms)

spectogram

method Welch’s method
sampling

frequencies
104Hz

window shape Hann window
length of each

segment
104

length of the
FFT

104

number of
points

overlapping
5.103

detrend
removing the

mean
sides only real part

Frontiers 47

Kusch et al.

B11 NEST : Measurement (part 2)

Micro

software HybridLFPy[8]

-electrodes:

number of MPI 2
number random seed 2

Local Field

number of segment by
neuron

defined by the method
lambda100 of Neuron

Potential

resolution 0.1 ms

soma position

random in a cylinder of radius
2000 mm and height of 100mm
with a minimal distance of 1mm.

The centre of the cylinder is
(0,-400).

excitatory neurons

morphology
pyramidal cell of Shuman 2020

[9] without biophysics and
synapses mechanisms

initial membrane
potential

Vm (-64.5 mV or -47.5 mV)

axial resistance 150.0 Ohm
membrane capacitance Cm (200pF)

passive mechanism yes
passive reversal

potential
EL (-64.5 mV or -74.0 mV))

passive conductance gL (10 nS)
inhibitory neurons

morphology
basket cell of Shuman 2020 [9]

without biophysics and synapses
mechanisms

initial membrane
potential

Vm (-64.5 mV or -75.0 mV)

axial resistance 150.0 Ohm
membrane capacitance Cm (200pF)

passive mechanism yes
passive reversal

potential
EL (-65.0 mV or -75.0 mV))

passive conductance gL (10 nS)

Frontiers 48

Kusch et al.

B11 NEST : Measurement(part 3)

Micro

connectivity

-electrodes:

layers 2 : [[300,-100],[-100,-600]]

Local Field

synapse shape truncated exponential

Potential

delay and weight
distribution

homogeneous values by population

excitatory connection
by layers and
populations

Ne ∗ pconnect ∗ 0.5 0
Ne ∗ pconnect ∗ 0.5 Ni ∗ pconnect

excitatory weight 1.0
excitatory delay dt (0.1 ms)

inhibitory connection
by layers and
populations

0 0
Ne ∗ pconnect Ni ∗ pconnect

inhibitory weight g (5.0 or 10.0)
inhibitory delay dt (0.1 ms)

electrodes
extracellular
conductivity

0.3 S

electrode positions and
contacts surface normal

positions normal
x y z x y z

1273 1273 1273 1 1 0
1273 -1273 -1273 1 1 0
-1273 -1273 15 1 1 0
-15 15 -15 1 1 0

1288 1258 1288 1 -1 0
1258 1288 1258 1 -1 0
1288 1258 -1800 1 -1 0
-1800 -1800 -1800 1 -1 0
-385 -385 -415 1 0 0
-415 -385 -385 1 0 0
-415 -415 -385 1 0 0
-385 -415 -415 1 0 0

contact shape circle of radius 20 mm
number of discrete

point for compute the
average potential

20

assumption method soma as point

Frontiers 49

Kusch et al.

C1 TVB : Model Summary
Neural Mass model Mean Adaptive Exponential
Connectivity Mouse connectome with 104 regions
Coupling linear coupling
stimulus

Monitors
ECoG (Electrocorticography) and state
variable of the mean-field

Frontiers 50

Kusch et al.

C2 TVB : Coupling
Name Linear
Type Linear coupling

equations
νextk = a ∗

(
j=1∑
104

ukjνej (t− τkj)

)
+ b

where ukj are the elements of the weights
matrix, τkj are the elements of the delay

matrix and νej are the mean excitatory firing
rate of the regions j.

parameters a = 1.0 and b = 0.0

C3 TVB : Connectivity
Connectivity is extracted from tracer data

as explained by the paper TVBM[10]
number of region 104
tract lengths maximum : 115.46 and mean : 53.58
speed 3 ms

weights
The weights are normalized such as the sum
of the input weight to one region equals 1.

(maximum: 0.73 and mean: 0.02)

centers
average center of mouse brain : [57., 74.97,

42.53]

orientation
the orientation is defined by a vector from
the average centre of a mouse brain to the

centre of the regions

Frontiers 51

Kusch et al.

C3 TVB : Connectivity
region the region names are extracted from Allen Mouse Brain

name Connectivity Atlas (17/01/2017)[11]
Right Primary motor area, Right Secondary motor area, Right Primary somatosensory area

nose, Right Primary somatosensory area barrel field, Right Primary somatosensory area lower

limb, Right Primary somatosensory area mouth, Right Primary somatosensory area upper limb,

Right Supplemental somatosensory area, Right Gustatory areas, Right Visceral area, Right

Dorsal auditory area, Right Primary auditory area, Right Ventral auditory area, Right Primary

visual area, Right Anterior cingulate area dorsal part, Right Anterior cingulate area ventral part,

Right Agranular insular area dorsal part, Right Retrosplenial area dorsal part, Right

Retrosplenial area ventral part, Right Temporal association areas, Right Perirhinal area, Right

Ectorhinal area, Right Main olfactory bulb, Right Anterior olfactory nucleus, Right Piriform

area, Right Cortical amygdalar area posterior part, Right Field CA1, Right Field CA3, Right

Dentate gyrus, Right Entorhinal area lateral part, Right Entorhinal area medial part dorsal zone,

Right Subiculum, Right Caudoputamen*, Right Nucleus accumbens*, Right Olfactory

tubercle*, Right Substantia innominata*, Right Lateral hypothalamic area*, Right Superior

colliculus sensory related*, Right Inferior colliculus*, Right Midbrain reticular nucleus*, Right

Superior colliculus motor related*, Right Periaqueductal gray*, Right Pontine reticular nucleus

caudal part*, Right Pontine reticular nucleus*, Right Intermediate reticular nucleus*, Right

Central lobule*, Right Culmen*, Right Simple lobule*, Right Ansiform lobule*, Right

Paramedian lobule*, Right Copula pyramidis*, Right Paraflocculus*, Left Primary motor area,

Left Secondary motor area, Left Primary somatosensory area nose, Left Primary

somatosensory area barrel field, Left Primary somatosensory area lower limb, Left Primary

somatosensory area mouth, Left Primary somatosensory area upper limb, Left Supplemental

somatosensory area, Left Gustatory areas, Left Visceral area, Left Dorsal auditory area, Left

Primary auditory area, Left Ventral auditory area, Left Primary visual area, Left Anterior

cingulate area dorsal part, Left Anterior cingulate area ventral part, Left Agranular insular area

dorsal part, Left Retrosplenial area dorsal part, Left Retrosplenial area ventral part, Left

Temporal association areas, Left Perirhinal area, Left Ectorhinal area, Left Main olfactory bulb,

Left Anterior olfactory nucleus, Left Piriform area, Left Cortical amygdalar area posterior part,

Left Field CA1, Left Field CA3, Left Dentate gyrus, Left Entorhinal area lateral part, Left

Entorhinal area medial part dorsal zone, Left Subiculum, Left Caudoputamen*, Left Nucleus

accumbens*, Left Olfactory tubercle*, Left Substantia innominata*, Left Lateral hypothalamic

area*, Left Superior colliculus sensory related*, Left Inferior colliculus*, Left Midbrain

reticular nucleus*, Left Superior colliculus motor related*, Left Periaqueductal gray*, Left

Pontine reticular nucleus caudal part*, Left Pontine reticular nucleus*, Left Intermediate

reticular nucleus*, Left Central lobule*, Left Culmen*, Left Simple lobule*, Left Ansiform

lobule*, Left Paramedian lobule*, Left Copula pyramidis*, Left Paraflocculus*

cortical all the region name ending by a ’*’ are not cortical regions
region

Frontiers 52

Kusch et al.

C4 TVB : Neural Mass Model (part 1)
Name Mean Ad Ex[12]

Type
Neural mass model of a network of adaptive exponential

integrate and fire excitatory and inhibitory neurons of second
statistical order with adaptation

equation

T
∂νe
∂t

=(Fe − νe) +
1

2
cee

∂2Fe
∂νe∂νe

+
1

2
cei

∂2Fe
∂νe∂νi

+
1

2
cie

∂2Fe
∂νi∂νe

+
1

2
cii

∂2Fe
∂νi∂νi

T
∂νi
∂t

=(Fi − νi) +
1

2
cee

∂2Fi
∂νe∂νe

+
1

2
cei

∂2Fi
∂νe∂νi

+
1

2
cie

∂2Fi
∂νi∂νe

+
1

2
cii

∂2Fi
∂νi∂νi

T
∂cee
∂t

=(Fe − νe) (Fe − νe) + cee
∂Fe
∂νe

+ cee
∂Fe
∂νe

+ cei
∂Fi
∂νe

+ cie
∂Fi
∂νe
− 2cee +

Fe (1/T −Fe)
Ne

T
∂cei
∂t

=(Fe − νe) (Fi − νi) + cee
∂Fe
∂νe

+ cei
∂Fe
∂νi

+ cei
∂Fi
∂νe

+ cii
∂Fi
∂νi
− 2cei

T
∂cie
∂t

=(Fi − νi) (Fe − νe) + cie
∂Fe
∂νi

+ cee
∂Fe
∂νe

+ cii
∂Fi
∂νi

+ cie
∂Fi
∂νe
− 2cie

T
∂cii
∂t

=(Fi − νi) (Fi − νi) + cie
∂Fe
∂νi

+ cei
∂Fe
∂νi

+ cii
∂Fi
∂νi

+ cii
∂Fi
∂νi
− 2cii +

Fi (1/T −Fi)
Ni

τWe

∂We

∂t
= −We + beνe + ae(µV (νe, νi, νext,We)− ELe)

τWi

∂Wi

∂t
= −Wi + biνi + ai(µV (νe, νi, νext,Wi)− ELi)

Frontiers 53

Kusch et al.

C4 TVB : Neural Mass Model (part 2)
noise Ornstein-Uhlenbeck process :
equation τou

dout
dt = (µ− out) + σ dWt

with Wt is a Wiener process

transfer
function

Fe =F((νe + 1e− 6) + wσout, νext, νi,We)

Fi =F((νe + 1e− 6) + wσout, νext, νi,Wi)

F =
1

2 τV
· Erfc(

V eff
thre − µV√

2σV
)

V eff
thre(µV , σV , τ

N
V =τV

gL
Cm

) = P ′0 +
∑

x∈{µV ,σV ,τNV }

Px ·
(
x− x0

δx0

)

+
∑

x,y∈{µV ,σV ,τNV }2
Pxy ·

(
x− x0

δx0

) (
y − y0

δy0

)
µG(νe, νext, νi) = ((νeKe + νextKext)τeQe) + (νiKiτiQi) + gL

µVs(νe, νext, νi, w, µG) =
((νeKe + νextKext)τeQe)Ee

µG

+
(νiKiτiQi)Ei + gLELs − w

µG

σV (µV , µG) =

√√√√√ ∑
s∈{e,i}

Ksνs

(
Qs
µG

(Es − µV)τs

)2
2CmµG + τs

τV (µV , µG) =

∑
s∈{e,i}Ksνs

(
Qs
µG

(Es − µV)τs

)2
∑

s∈{ex,in}Ksνs

(
Qs
µG

(Es−µV)τs
)2

2CmµG
+τs

Frontiers 54

Kusch et al.

C5 TVB : Neural Mass Model Parameters(part 1)

case Asynchronous
Irregular

Synchronize
Regular
bursting

T
time resolution of the mean
field

20.0ms

Cm Capacity of the membrane 200.0 pF

ELe
Leak reversal potential
excitatory(EL)

-64.5 mV -64.5 mV -74.0 mV

ELi
Leak reversal potential
inhibitory(EL)

-65.0 mV -65.0 mV -75.0 mV

gL Leak conductance 10.0 nS

ae
Subthreshold adaptation of
excitatory neurons(a)

0.0 nS

be
Spike-triggered adaptation of
excitatory neurons(b)

10.0 pA 100.0 pA 50.0 pA

τWe

Adaptation time constant of
excitatory neurons(τw)

500.0 ms 500.0 ms 150.0 ms

ai
Subthreshold adaptation of
inhibitory neurons(a)

0.0 nS

bi
Spike-triggered adaptation
inhibitory neurons(b)

0.0 pA

τWi

Adaptation time constant of
inhibitory neurons(τw)

1.0 ms

Ee
Excitatory reversal
potential(Eex)

0.0 mV

τe
Rise time of excitatory synaptic
conductance(τex)

5.0 ms

Qe excitatory quantal conductance 1.0 nS

Ei
Inhibitory reversal
potential(Ein)

-80.0 mV

τi
Rise time of inhibitory synaptic
conductance(τin)

5.0 ms

Qi inhibitory quantal conductance 10.0 nS 5.0 nS 10.0 nS
pconnectprobability of connection 0.05 0.05 0.005
Ntot Number of total neurons 10000

pi
percentage of inhibitory
neurons

0.2

Frontiers 55

Kusch et al.

C5 TVB : Neural Mass Model Parameters(part 2)

Ne
Number of excitatory
neurons

Ntot(1− pi) =8000

Ni
Number of inhibitory
neurons

Ntotpi =2000

Ke

mean number of input
excitatory synapses :
Nepconnect

400 400 40

Ki

mean number of input
inhibitory synapses :
Nipconnect

100 100 10

Kexte
number of external
excitatory synapse

115 300 80

Pe

second order
polynomial of the
phenomenological
threshold for excitatory
neurons in mV

P0 PµV PσV PτNV
-0.0498 0.00506 -0.025 0.0014
Pµ2

V
Pσ2

V
P(τNV)2

-0.00041 0.0105 -0.036
PµV σV PµV τNV

PσV τNV
0.0074 -0.0012 -0.0407

Pi

second order
polynomial of the
phenomenological
threshold for inhibitory
neurons in mV

P0 PµV PσV PτNV
-0.0514 0.004 -0.0083 0.0002
Pµ2

V
Pσ2

V
P(τNV)2

-0.0005 0.0014 -0.014
PµV σV PµV τNV

PσV τNV
0.0045 0.0028 -0.00153

νext external input see coupling section
wσ weight of the noise 0.0002 0.0006 0.002
σ variation of the noise 0.2
µ mean of the noise 0.0
τou mean of the noise 20.0

initial condition
(random between
maximum and
minimum)

µE(kHz) : (0., 0.) µi(kHz) : (0., 0.)
cee : (0., 0.) cei : (0., 0.)
cii : (0., 0.)

We(pA) : (0., 5.) Wi(pA) : (0., 0.)

Frontiers 56

Kusch et al.

C6 TVB : Monitor

state variable

proxy node node
Only the mean firing
rate of the excitatory
population because it’s
the coupling variable
and it’s extracted from
NEST simulation

mean firing rate of excitatory and inhibitory
population, the variation of excitatory
and inhibitory firing rate, the co-variation
between excitatory and inhibitory firing rate,
mean adaptive current of excitatory and
inhibitory firing rate

precision dt (0.1ms)

SEEG

equation ΨECoG(channel, t) = P.νe + noise
where P is the gain matrix and N is the mean
firing rate of excitatory population
Pij = scaling factor ∗
region volumej/||ri − rj || where ri is
the position of the contact point of the
channel and rj is the centre of region j.

contact position
left hemisphere

x y z
40.0 80.0 79.5
20.0 80.0 72.0
30.0 70.0 76.5
30.0 90.0 75.5
22.5 72.5 73.0
22.5 87.5 72.5
37.5 72.5 78.5
37.5 87.5 78.5

right hemisphere

94.0 80.0 69.
74.0 80.0 78.5
84.0 70.0 74.5
84.0 90.0 74.0
76.5 72.5 77.5
76.5 87.5 77.5
91.5 72.5 70.5
91.5 87.5 70.

scaling factor 1.0

region volume
The volume is extracted from the volume
mapping of Allen Mouse Brain Connectivity
Atlas
mean: 3712.29 max: 16245.0 min: 957.0

Frontiers 57

Kusch et al.

D Transformation NEST to TVB : model
Name SMFR : sliding mean firing rate

Type
sliding mean over the histogram of the instantaneous
firing rate

Input
spike trains of excitatory neurons from one brain
region for synchronized time (2ms)

Output
mean firing rate of the excitatory population of a
brain region for synchronized time (2ms)

equation ∀t ≥ T,SMFR(t) =

t∑
s=t−T

Ne∑
n=1

spike(n, s)

NeT
∗

103 (KHz)
where spike(n, s) =

1 if neuron n create spike at time s

with a presicion of dt

0 else
parameters size of the windows T : 20.0 ms (same as TVB)
parameters number of neurons Ne : 8000 (same as NEST)

parameters
precision of the integration dt : 0.1 ms (same as
TVB and NEST)

initialization
The transfer module doesn’t have initialized
because TVB used its initialization for starting the
communication.

Frontiers 58

Kusch et al.

E Transformation TVB to NEST : model
Name MIP
Type Multiple Interaction Process[13]

Input
incoming excitatory firing rate of a brain region for synchronized
time (2ms)

Output
spike trains to individual neurons with a correlation of p for
synchronized time (2ms)

equation reference spike train:
xref (t) = InhomogenousPoissonProcess((νinput(t)nbsynapse+
1e− 12)/p)
input individual spike train to the neuron n:
xn(t) = xrefB(size(xref), p)

where νinput
mean external excitatory firing rate computed by TVB for the
NEST population.

nbsynapse number of external input synapse (A:115, IS:300, RB:80)
p percentage of shared neurons (A:0.01, IS:0.1, RB:0.01)
B binomial law

The
implementation
of the
Inhomogenous
Poisson
Process

Dedicated function from the python library elephant (version
0.9), which: 1) generates spike trains with homogeneous Poisson
generator for the highest rate; 2) removes some spikes for having
variation of rate based on the input rates. The homogeneous
Poisson generator computes the time interval between each spike
using the exponential random generator of numpy.

initialization The initial rate sent to TVB are zeros during the first tsynch (2ms).

Frontiers 59

Kusch et al.

2.2 Figures

Figure 1. Zoom on 1s for the spiking neural network with regular bursting state
This figure is a zoom of the figure 3 between 43s and 44s. top-left Example of time series
from 10 adaptive exponential leaky and integrator neurons. The red lines are excitatory
and the blue curve are inhibitory neurons. The mean excitatory time series is shown with a
thick red line and the inhibitory time series is shown with a thick blue line. middle-left The
adaptation currents of 10 neurons are shown. The thick line is the mean adaptive currents.
bottom-left The figure shows local field potential from the 12 sites of the middle line of the
polytrode. The local field potential is computed from the spike trains of all neurons by the
software HybridLFPY [8]. top-right The figure shows spike trains of 10000 neurons for
1s. bottom-right The figure shows respectively the excitatory and inhibitory instantaneous
firing rate of the population in panel middle-right in red and blue. bottom Spectrogram and
power spectrum example of the instantaneous firing rate for 1s.

Frontiers 60

Kusch et al.

44000 46000 48000 50000 52000
Time (ms)

0

26

52

77

103

Re
gi

on
 Id

10
 H

z

Figure 2. Mouse Brain activity for Asynchronous Irregular
For the state of the Asynchronous Irregular, an overview of the mean firing rates of
excitatory, in red, and inhibitory, in blue, populations from the model of Mean Adaptive
Exponential for all mouse brain regions. The two black curves are the mean firing rate of
the two populations of excitatory neurons simulated with NEST [1].

Frontiers 61

Kusch et al.

44000 46000 48000 50000 52000
Time (ms)

0

26

52

77

103

Re
gi

on
 Id

10
 H

z

Figure 3. Mouse Brain activity for Synchronize Irregular
For the state of the Synchronize Irregular, an overview of the mean firing rates of excitatory,
in red, and inhibitory, in blue, populations from the model of Mean Adaptive Exponential
for all mouse brain regions. The two black curves are the mean firing rate of the two
populations of excitatory neurons simulated with NEST [1].

Frontiers 62

Kusch et al.

44000 46000 48000 50000 52000
Time (ms)

0

26

52

77

103

Re
gi

on
 Id

10
 H

z

Figure 4. Mouse Brain activity for Regular Bursting
For the state of the Regular Bursting, an overview of the mean firing rates of excitatory,
in red, and inhibitory, in blue, populations from the model of Mean Adaptive Exponential
for all mouse brain regions. The two black curves are the mean firing rate of the two
populations of excitatory neurons simulated with NEST [1].

Frontiers 63

Kusch et al.

loop of simulation

Initialisation

By regionsBy regions

transform
rates to spikes

send rate

Read list of IDs
from NEST

Read list of IDs
from NEST

Initialisation
of communications

Initialisation
of communications

Creation of file
with MPI port
for receiving

Initialisation
of communications

Creation of file
with MPI port
for sending

Read parameters
fi le

Wait receiving
connections

Wait sending
connections

Creation of file
with MPI port
for sending

Initialisation
of communications

Initialisation
of communications

Start loop for
simulation

start loop
transforming data

start loop
send data

with initial value

start loop
receiving data

configure
simulator

configure
monitor

configure
integrator

configure
coupling

configure
connections

configure model

Create logger

Read parameters
fi le

start loop
transforming data

Create loggerCreate loggerCreate logger

Transformation
Rate to spike

Create Processes

Wait receiving
connections

Wait sending
connections

start loop
send data

with initial value

start loop
receiving data
(initial values)

Consumer of
TVB data

Consumer of
NEST data

Create loggerCreate loggerCreate logger

Create logger

Create logger

Transformation
Spike to rate

Create Processes

Read parameters
fi le

Read parameters
fi le

Initialisation
of communications

create device
and connect them

create connection
between population

create connections
in the population

create population
of neurons

Create folders
for simulation

Creation of file
with parameters

Link parameters

Start Modules

Launcher

Creation of files
with the Ids of
mpi devices

Start loop for
simulation

Read file
MPI port file
and connectRead file

MPI port file
and connect

Creation of file
with MPI port
for receiving

Consumer of
NEST data

Producer of
TVB data

configure NEST
kernel

Transfer
TVB to NEST

TVBTransfer
NEST to TVB

NEST

send spiketrains
of the run

Send rate

disconnection

end
simulation

disconnection disconnection disconnection

end
simulation

receive rate

receive spikes

send spikes

transform
spikes to rates

receive spikes
and store them

Simulate

receive rates

end end

rates

rates .

endendendend

spikes

spikes
spikes

Simulate

end

end end end

. rates

fill buffer

spikes

spikes
spikes

fill buffer .

rates .

Figure 5. Detail sequence diagram of the co-simulation
This figure represents the interaction among the different modules during the co-simulation
and the different exchanged data. The co-simulation is separated in 3 steps: initialisation
and configuration, simulation and termination.
The colour code of the boxes :
• green for the creation of a logger, one by components and modules
• orange for access to file systems (the creation of a folder or a file, the reading of files,

...) and the start of the simulation with initial condition.
• yellow for initialization and configuration of modules and components
• magenta for MPI waiting connections
• white for the simulation step and the name of modules or components
• red for the termination of the simulation.

Frontiers 64

Kusch et al.

Open connection

Open connection

Wait MPI connection

Wait MPI connection

Create MPI portCreate MPI port

Wait output port fi le

Wait input port file

create file with
list of spike detectors

create file with
list of spike generators

Clean

Delete Files
of configuration

Close Port

DisconnectionDisconnectDisconnect

Delete Files
of configuration

Close Port

Disconnection

 For each run

Run: post_run

Run:

Recorder backendInput backend

Run: pre_run

Prepare

Connect to MPI Port

Read File

Create file with
MPI Port description

Create file with
MPI port description

NEST outputNESTNEST input

BarrierBarrier

 ONLY : if size list is different to 0

size of data by device and the total shape
(size_list+1,INT,ANY_source,ids[0])

list_ of id
(size_list,INT,0,0)

t rue
(1,CXX_BOOL,0,1)

data [id_dectector,id_neurons, times]
(sahepe,DOUBLE,0,0)

shape
(1,INT,0,0)

data
(total shape,DOUBLE,Previous_source,id[0])

true
(1,CXX_BOOL,0,0)

t rue
(1,CXX_BOOL,0,2)t rue

(1,CXX_BOOL,0,2)

t rue
(1,CXX_BOOL,0,1)

t rue
(1,CXX_BOOL,0,1)

t rue
(1,CXX_BOOL,0,0)

size of the list of id
(1,INT,0,0)

Read File

connection connection
Connect to MPI Port

Figure 6. Sequence diagram of the communication protocol with NEST
The communication with NEST [1] is separated into 3 steps: creation of the MPI connection,
simulation and termination.
The colour code of the boxes :
• orange for access to file systems (the creation of files, the reading of files, ...).
• magenta for management of MPI port
• white for the name of the modules or components

Frontiers 65

Kusch et al.

Wait for description of
MPI port files

Create file with ids
of mpi recording devices

Create file with ids
of mpi stimulating devices

Wrapper of NEST

NEST Clean
1) Send end of simulation
2) MPI barrier
3) Disconnect

NEST Run
Input backend :

pre_run : Ask update data for
 all the input devices
post_run : Send the end of the run
Record backend :

pre_run : Send beggining of simulation
post_run : Send data/spikes of the run

NEST Prepare
1) Read all the file with the port description
2) Connect with MPI to all the different port

count = 0

count + 1

configure logger

Initialise connection
between neuron population

Initialise population of neurons

Initialise NEST

True

False

count > end

Figure 7. State diagram of NEST wrapper
The diagram describes all the different states of the NEST wrapper during the co-simulation.
The beginning is the set-up of the network (the creation of neurons, their connection and the
creation of devices). The additional steps are the loop of simulation and the termination.

Frontiers 66

Kusch et al.

MPI barrier

MPI barrier

Initialisation of
internal communication

Initialisation of
internal communication

NEST Producer

Reshape the data

Copy internal buffer
and Release buffer

Open Port

Read file with
Ids of spike detector

Read parameters file

Create file
with port descriptions

Wait for connection

Create MPI port

Configuration logger

Receive list of ids

Remove port file

Close the MPI port

Close access to
internal bufferWait access to

internal buffer

Disconnect
MPI connection

Send the times
of spikes

Send the times
of spikes

Send the number
of spikes

Find the spike trains
of the devices

Receive check

Remove files

Close the MPI port

Wait access to
internal buffer

Disconnect
MPI connection

Receive data

Receive shape

Send True

Save spikes
in internal buffer

Close access to
internal buffer

Relase access to
internal buffer

Send ready to receive

count + 1

Open Port

Read file with
Ids of spike detector

NEST Consumer

Read parameters file

Create file
with port descriptions

count = 0

Wait for connection

Create MPI port

Configuration logger

 no

Yes liste empty ?

for all the sources

True

False ready ?

value of tag ?

for all sources

2
1

0

True

False ready ?

for all sources

0

for all the sources

2

value of tag ?

1

Figure 8. State diagram of transfer components for interaction with NEST
The diagram describes all the states of the components of the transfer module which
communicates with NEST. The beginning is the configuration of itself and the creation of
the MPI connection. Once the MPI connection is made, there is a loop of the simulation.
The centre of the simulation loop is the value of the tag received by the component to
identify if NEST is ready to receive or send messages. If this tag equals 2, the components
go in the sequence for the termination phase.

Frontiers 67

Kusch et al.

Open connectionOpen connection

Wait port files

Wait MPI connection

Create file with
MPI port description

Create MPI port Create MPI port

Create file with
MPI Port description

Wait MPI connection

Delete File
of configuration

Close Port

Disconnection

Delete File
of configuration

Close Port

Disconnection

Close Port

Disconnect

 For each run

Connect to MPI Port

Read port files

TVB outputTVBTVB input

Barrier

Barrier time starting and ending
(2,DOUBLE,source,1)

send True
(1,BOOLEAN,0,0)

send True
(1,BOOLEAN,0,1)

data
(shape,DOUBLE,source,0)

shape data
(1,INT,source,0)

time starting and ending
(2,DOUBLE,source,0)

data
(shape,DOUBLE,source,0)

shape data
(1,INT,source,0)

send True
(1,BOOL,0,0)

time starting and ending
(2,DOUBLE,source,0)

send True
(1,BOOL,0,0)

connection connection

Figure 9. Sequence diagram of the communication protocol with the wrapper of TVB.
The communication with TVB [6] is separated in 3 steps: creation of the MPI connection,
simulation and termination.
The colour code of the boxes :
• orange for access to file systems (create files, read files, ...).
• magenta for management of MPI port
• white for the name of the modules or components

Frontiers 68

Kusch et al.

MPI barrier

Wait for description
of MPI port files

Wrapper of TVB

disconnect of transformers

count + 1

receive rate
of proxy node

send rates

simulate

count = 0

MPI connection
with transformer

Initialise TVB

configure the logger

get the parameters

True

False

count > end

Figure 10. State diagram of wrapper of TVB modules
The diagram describes all the different states of the TVB wrapper during the co-simulation.
The beginning is the set-up of the network (the creation of neurons, their connection and the
creation of devices). The additional steps are the loop of simulation and the termination.

Frontiers 69

Kusch et al.

MPI barrier

MPI barrier

Initialisation of
internal communication

Initialisation of
internal communication

Close internal
communication

Remove port file

Close the MPI port

Disconnect
MPI connection

Configuration logger

Wait for connection

Open MPI Port

Create file
with port descriptions

Create MPI port

Read parameters file

Configuration logger

Wait for connection

Open MPI Port

Create file
with port descriptions

Create MPI port

Consummer TVB

Transfer time and
rate through internal

communication

Receive rate

Receive size of data

Receive start
and end time

Wait answer

Send check for
receiving data

End receiving from
internal communication

Producer TVB

Close internal
communication

Read parameters file

Remove port file

Close the MPI port

Disconnect
MPI connection

Get times and rates
from internal

communication

Send rates

Send the size of
data

Send start
and end time

Receive ready to send

1

0

value of tag?

Yes

recieve all ? no

for all the sources

value of tag?

1

0

Figure 11. State diagram of transfer components for interaction with the wrapper of TVB
The diagram describes all the state of the components of the transfer module which
communicates with TVB. The beginning is the configuration of itself and the creation
of the MPI connection. Once the MPI connection is made, there is a loop of the simulation.
The centre of the simulation loop is the value of the tag received by the component to
identify if NEST is ready to receive or send messages. If this tag equals 1, the components
go in the sequence for the termination phase.

Frontiers 70

Kusch et al.

Nest
I/O

TVB
I/O

Transformation
functions

Internal communication
launcher

Simulator I/O

Figure 12. File organisation of the transformer module
The files of transfer modules are organised following the modularity of the module. The
folder internal communication contains all the functions of the communication between
components of the modules. The launcher regroups the files used to start the modules
of transformation between specific simulators. The Simulator I/O contains the function
for the interface of each simulator. The figure shows that the interface for each simulator
(TVB and NEST) is separated and independent. Transformation functions are in a folder
which contains the abstract class for the transformations and the implementation of specific
transformations.

Frontiers 71

Kusch et al.

Save rate Close internal
communications

Close access to
internal buffer

Check if it's the end
of transformation

Check if it's the end
of transformation

count += 1

Transform rates
to spikes

Fill internal
buffer with spike trains

Initialisation of
transformation function

Initialisation of
internal communication

Wait access to
internal buffer

Release internal buffer

Save spikes

Get rates and times

Create folder
for saving data

Read parameters file

count = 0

Configuration logger

Close internal
communications

Close access to
internal buffer

Check if it's the end
of transformation

Check if it's the end
of transformation

count += 1

Transform spike to rate

Store spikes
or Copy buffer

Initialisation of
transformation function

Initialisation of
internal communication

Transformation
Rate to Spike

Wait access to
internal buffer

Save histogram

Release internal buffer

Save rate

Send rate and time

Create folder
for saving data

Transformation
Spike to Rate

Read parameters file

count = 0

Configuration logger

end ?

True

False

False

end ?

True

True

False ready ?

end ?

True

False

False

end ?

True

True

False ready ?

Figure 13. State diagram of transfer components which transform data from one scale to
another
The diagram describes all the state of the transfer components. The beginning is the
configuration of itself. The component is waiting to access to the data from one buffer for
the transformation. After accessing to the data, it transforms them and awaits the access for
writing in a second buffer. When it receives the termination from one side or the other, it
goes in the sequence of termination.

Frontiers 72

Kusch et al.

«P
ro

du
ce

rD
at

aN
ES

T»
P

ac
ka

ge
::S

im
ul

at
or

IO
id

_f
irs

t_
sp

ik
e_

de
te

ct
or

: i
d

of
 th

e
fir

st
 s

pi
ke

 d
et

ec
to

r
si

m
ul

at
io

n_
tim

e
: P

ro
du

ce
 d

at
a

to
 N

E
S

T
fr

om
 a

 s
ha

re
d

bu
ffe

r
R

es
po

ns
ib

ili
tie

s
--

 R
ec

ei
vi

ng
 d

at
a

fr
om

 tr
an

sf
or

m
er

--
 S

en
d

to
 N

ES
T

«T
ra

ns
fo

rm
er

R
at

eS
pi

ke
»

P
ac

ka
ge

::S
im

ul
at

or
IO

id
: i

d
of

 N
ES

T
de

vi
ce

s
pe

rc
en

ta
ge

_s
ha

re
d:

 p
er

ce
nt

ag
e

of
 s

ha
re

d
sp

ik
es

nb
_s

pi
ke

_g
en

er
at

or
: n

um
be

r
of

 s
pi

ke
 g

en
er

at
or

nb
_s

yn
ap

se
: n

um
be

r
of

 s
yn

ap
se

 a
tta

ch
 to

 th
e

ge
ne

ra
to

r
fu

nc
tio

n_
tr

an
sf

or
m

at
io

n:
 s

el
ec

tio
n

fu
nc

tio
n

of
 tr

an
sf

or
m

at
io

n
sa

ve
_h

is
t:

sa
vi

ng
 th

e
hi

st
og

ra
m

... sa
ve

_r
at

e:
 s

av
in

g
th

e
ra

te
 g

en
er

at
e

... si
m

ul
at

io
n_

tim
e

: T
ra

ns
fo

rm
at

io
n

fu
nc

tio
n

of
 th

e
sp

ik
e

to
 r

at
e

ge
ne

ra
te

_s
pi

ke
(c

ou
nt

,ti
m

e_
st

ep
,r

at
e)

: g
en

er
at

or
 o

f s
pi

ke
s

fr
om

ra

te
s

us
in

g
el

ep
ha

nt

R
es

po
ns

ib
ili

tie
s

--
 1

)
ge

t t
he

 s
pi

ke
--

 2
)

tr
an

sf
or

m
 s

pi
ke

 to
 r

at
e

--
 3

)
se

nd
 r

at
e

Th
e

st
ep

 1
 a

nd
 3

 n
ee

d
to

 b
e

di
ss

oc
ia

te
 fo

r
sy

nc
hr

on
iz

at
io

n
re

qu
ire

m
en

t.
Th

is
 d

is
so

ci
at

io
n

al
lo

w
 th

e
tr

an
sf

or
m

at
io

n
m

od
ul

e
to

 b
uf

fe
r

on
e

m
or

e
st

ep

fr
om

 th
e

se
nd

er
 o

r
th

e
re

ce
iv

er
.

N
ES

T
In

pu
t

Tr
an

sf
or

m
er

TV
B

 O
ut

pu
t

ne
st

_t
o_

tv
b

«C
on

su
m

er
TV

B
D

at
a»

P
ac

ka
ge

::S
im

ul
at

or
IO

si
m

ul
at

io
n_

tim
e

: R
ec

ei
ve

 d
at

a
fr

om
 T

V
B

 a
nd

 tr
an

sf
er

t t
he

m
 to

 tr
an

sf
or

m
er

R
es

po
ns

ib
ili

tie
s

--
 G

et
 d

at
a

fr
om

 T
V

B
--

 tr
an

sf
er

t t
o

tr
an

sf
or

m
er

«P
ro

du
ce

rT
V

B
D

at
a»

P
ac

ka
ge

::S
im

ul
at

or
IO

si
m

ul
at

io
n_

tim
e

: P
ro

du
ce

 d
at

a
to

 T
V

B
 fr

om
 r

ec
ei

vi
ng

 d
at

a.
R

es
po

ns
ib

ili
tie

s
--

 R
ec

ei
vi

ng
 d

at
a

fr
om

 tr
an

sf
or

m
er

--
 S

en
d

to
 T

VB

«T
ra

ns
fo

rm
er

S
pi

ke
R

at
e»

P
ac

ka
ge

::S
im

ul
at

or
IO

sy
nc

h:
 ti

m
e

of
 s

yn
ch

ro
ni

za
tio

n
dt

: t
im

e
of

 in
te

gr
at

io
n

pa
th

_i
ni

t:
pa

th
 o

f f
ile

 w
ith

 in
iti

al
 c

on
di

tio
n

sh
ap

e:
 s

ha
pe

 o
f t

he
 b

uf
fe

r
w

id
th

: t
he

 s
iz

e
fo

 th
e

w
in

do
w

bu
ffe

r:
 b

uf
fe

r
w

ith
 th

e
co

un
t o

f s
pi

ke
s

sa
ve

_h
is

t:
sa

vi
ng

 th
e

hi
st

og
ra

m
... sa

ve
_r

at
e:

 s
av

in
g

th
e

ra
te

 g
en

er
at

e
... si

m
ul

at
io

n_
tim

e
: T

ra
ns

fo
rm

at
io

n
fu

nc
tio

n
of

 th
e

sp
ik

e
to

 r
at

e
ad

d_
sp

ik
es

(c
ou

nt
, s

iz
e_

bu
ffe

r,
 b

uf
fe

r)
: a

dd
in

g
sp

ik
e

in
 th

e
hi

st
og

ra
m

an
al

ys
e(

co
un

t,
hi

st
):

 a
na

ly
se

 th
e

hi
st

og
ra

m
 to

 g
en

er
at

e
st

at
e

va
ria

bl
e

an

d
th

e
tim

e
R

es
po

ns
ib

ili
tie

s
--

 1
)

ge
t t

he
 s

pi
ke

--
 2

)
tr

an
sf

or
m

 s
pi

ke
 to

 r
at

e
--

 3
)

se
nd

 r
at

e
Th

e
st

ep
 1

 a
nd

 3
 n

ee
d

to
 b

e
di

ss
oc

ia
te

 fo
r

sy
nc

hr
on

iz
at

io
n

re
qu

ire
m

en
t.

Th
is

 d
is

so
ci

at
io

n
al

lo
w

 th
e

tr
an

sf
or

m
at

io
n

m
od

ul
e

to
 b

uf
fe

r
on

e
m

or
e

st
ep

fr

om
 th

e
se

nd
er

 o
r

th
e

re
ce

iv
er

.

TV
B

 In
pu

t

Tr
an

sf
or

m
er

N
ES

T
O

ut
pu

t

ne
st

_t
o_

tv
b

«C
on

su
m

er
N

ES
TD

at
a»

P
ac

ka
ge

::S
im

ul
at

or
IO

si
m

ul
at

io
n_

tim
e

: R
ec

ei
ve

 d
at

a
fr

om
 N

E
S

T
an

d
ad

d
th

em
 in

 a
 s

ha
re

d
bu

ffe
r

R
es

po
ns

ib
ili

tie
s

--
 G

et
 d

at
a

fro
m

 N
E

S
T

--
 tr

an
sf

er
t t

o
tr

an
sf

or
m

er

Figure 14. Structure diagram of the two transfer modules with the description of each
component
Each component is based on a class. The diagram gives a short description of each class
and their contents.

Frontiers 73

Kusch et al.

«ThreadCommunicationn»
Package::communication

Class for using thread for the internal communication
-buffer_read_data: variable contains reading buffer
-status_read: status of read buffer and it can contain
�the dimension of the data
-lock_read: lock for write in the status
-databuffer: buffer where to right
-buffer_write_data: variable for shared buffer
-status_write: status of buffer and contains the dimension of the data
-lock_write: lock for write in the status
-shape_buffer: dimension of the data

Responsibilities
Thread implementation of exchange of data between 3 threads

«MPICommunication»
Package::communication

Class for using MPI for the internal communication
-rank
Usage of shared memory
-win: it's a MPI Window for shared buffer if it's required
-buffer_r_w: rank for the shared memory
-request_send_size_buffer: writer of the buffer
-request_read_buffer: read of the buffer variable for rate
-sender_rank: sender rank
-request_send_done: request for ending of send data
-receiver_rank: receiver rank
-request_receive_time: request for time
-request_receive_rate: requets for rate
-request_read_done: request for ending of receive data
_shared_mem_buffer(buffer_r_w, comm=MPI.COMM_WORLD):
�Create shared memory buffer
Responsibilities
MPI implementation of exchange of data between 3 MPI processes

CommunicationInternAbstract
Package::communication

Abstract class for internal communication
Limitation of spike and rate exchange

-logger: logger for the class
1) for spike trains exchanges
-databuffer: shared buffer for spike exchange
-shape_buffer: shape of the buffer
-send_spike_exit: boolean to identify the end of the simulation
2) for rate and time exchange
-get_time_rate_exit: boolean to identify the end from getting function
-send_time_rate_exit: boolean to identify the end from sending function

Abstract classes
finalise: Procedure before finalise MPI
1) for spike trains exchanges
-send_spikes_ready: wait until it's ready to use the buffer
-send_spikes: buffer ready to use
-send_spikes_trains(spike_trains): Write spike trains in buffer and send them
-send_spikes_end: close internal connection for sending spikes
-get_spikes: wait the sender to be ready and return the spikes trains
-get_spikes_ready: wait the buffer is ready
-get_spikes_release: realse the buffer
-get_spikes_end: close internal connection for getting spikes
2) for rate and time exchange
-get_time_rate: wait that the data are available and return them when it's ready
-get_time_rate_release: end the read of the data
-get_time_rate_end: close the connection for receiving data
-send_time_rate: send time and rate
-send_time_rate_end: close the connection for sending data
Responsibilities
-- all function for exchange data between processes in the transformer function

«ProducerDataNEST»
Package::SimulatorIO

(see instance)

«ConsumerTVBData»
Package::SimulatorIO

(see instance)

MPICommunicationExtern
Package::communication

Abstract class for MPI communication with a simulator
Management of MPI communication for exchange of data with simulator

-logger: logger for the class
-name: name of the module
-ports: array of MPI port
-path_ports: path for the port file
-communication_internal: CommunicationInterne between instance
run(path_connection): main function
create_connection(paths, info=MPI.INFO_NULL, comm=MPI.COMM_SELF, root_node=0):
 Create the port the get external connection
close_connection(): close connection port
finalise(): finalise MPI
Abstract classes
simulation_time(): Connection with simulator
Responsibilities
-- running the process:
�1) creation of the connection if it's necessary
�2) simulation time / communication with the simulator during the simulation
�3) close the connection if it's necessary
�4) finalise the MPI communication

«TransformerRateSpike»
Package::Transform

(see instance)

«ProducerTVBData»
Package::SimulatorIO

(see instance)

«TransformerSpikeRate»
Package::Transform

(see instance)

«ConsumerNESTData»
Package::SimulatorIO

(see instance)

communication_internal

1
*

Figure 15. Class diagram of the transfer modules.
The description of the classes on the right part is described in the supplementary figure 14.
All these classes inherit from an abstract class which manages MPI communication. This
abstract class manage the MPI connection and has an internal communicator. This internal
communicator is an abstract class for the communication between the transfer components.
This internal communication can be a melting process or multithreading as the diagram
shows.

Frontiers 74

Kusch et al.

a

 For each run

Receiver ratesSender rates

Free Shared memory

Create Shared Memory locate in Sender process

 For each run

Receiver spikesSender spikes

rates
(array of double)

t imes = [-1]
(array of int)

t ime
(array of double)

done? False
(1,BOOLEAN)

done? True
(1,BOOLEAN)

shape = [-1]
(array of int)

shape
(array of int)

continu? False
(1,BOOLEAN)

continu? true
(1,BOOLEAN)

b

status[0] = -1

end?

status[0] = -2

read buffer

Wait access to
internal buffer

Spikes exchange
reader

initialisation of status

status[0] = -1

end?

status = shape buffer

write in buffer

Wait access to
internal buffer

Spikes exchange
wri ter

create shared buffer

initialisation of status

True

end?

False

True

status[0] == -1 ?

False

True

False status[0] == -2 ?

True

end?

False

True

status[0] == -1 ?

False

True

False status[0]>0 ?

Figure 16. Communication between components in the transfer module
As described in the supplementary figure 15, the internal communication has 2
implementations. Panel a is a sequence diagram of the communication of spikes and
rates using MPI communication. Panel b is a state diagram of the management of a shared
buffer in the case of multithreading communication for transferring spike data.

Frontiers 75

Kusch et al.

102 103 104 105
0

200

400

600

800

1000

1200

1400

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Co-simulation
NEST simulation
NEST IO
NEST wait
TVB simulation
TVB IO

102 103 104 105
0

20

40

60

80

100

St
ac

k
of

 p
er

ce
nt

ag
e

of
sim

ul
at

ed
 ti

m
e NEST simulation

NEST IO
NEST wait
TVB simulation
TVB IO
Co-simulation

102 103 104 105
0

100

200

300

400

500

600

700

W
al

l c
lo

ck
 ti

m
e

of
th

e
di

ffe
re

nt
 N

ES
T

fu
nc

tio
ns

 in
 s

NEST IO
NEST wait
NEST simulation

a b

c

Number of neurons simulated with NEST

Figure 17. Details of the performance with the increase of neurons
Performance is obtained for 1 second of simulated time on a computer (see Materials and
Methods for more details). The reference implementation uses 1 MPI process, 6 virtual
processes/threads, and 2.0 ms to synchronize time between simulators for the simulation of
20000 neurons. Simulation time depends on the number of neurons simulated with NEST.
a The wall clock time of the simulator depends on the number of neurons. The total time
of the co-simulation is represented in yellow. The ”simulation”, ”IO” and ”wait” times of
NEST are represented in red surface with respectively hatches of big circles, small circles
and points. The ”simulation” and ”IO” times of TVB are represented in the blue surface
with respective hatches of horizontal lines and oblique lines. b The wall clock time for the
co-simulation (yellow curve), NEST (red curves) and TVB (blue curves) by the total wall
clock time. The solid, dashed and dashed-dotted curves are associated with ”simulation”,
”IO” and ”wait” time of NEST. The solid and dashed line is associated with ”simulation”
and ”IO” time of TVB. c The different timer for NEST simulator. Each contribution is
reported as a red curve and for increasing numbers of neurons. The solid, dashed and
dashed-dotted curves represent ”simulation”, ”IO” and ”wait” time of NEST, respectively.

Frontiers 76

Kusch et al.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

2500

3000

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Co-simulation
NEST simulation
NEST IO
NEST wait
TVB simulation
TVB IO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

20

40

60

80

100

St
ac

k
of

 p
er

ce
nt

ag
e

of
sim

ul
at

ed
 ti

m
e NEST simulation

NEST IO
NEST wait
TVB simulation
TVB IO
Co-simulation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

2500

3000

W
al

l c
lo

ck
 ti

m
e

of
th

e
di

ffe
re

nt
 N

ES
T

fu
nc

tio
ns

 in
 s

NEST IO
NEST wait
NEST simulation

a b

c

Time of synchronization between NEST and TVB (in ms)

Figure 18. Details of the performance with the increase of synchronize time
Performance is obtained for 1 second of simulated time on a computer (see Materials and
Methods for more details). The reference implementation use 1 MPI process, 6 virtual
processes/threads, 2.0 ms to synchronize time between simulator for the simulation of
20000 neurons. Simulation time depends on the synchronized time between NEST and
TVB. a The wall clock time of the simulator depends on the time of synchronization
between the two simulators. The total time of the co-simulation is represented in yellow.
The ”simulation”, ”IO” and ”wait” times of NEST are represented in red surface with
respectively hatches of big circles, small circles and points. The ”simulation” and ”IO”
times of TVB are represented in the blue surface with respective hatches of horizontal
lines and oblique lines. b The wall clock time for the co-simulation (yellow curve), NEST
(red curves) and TVB (blue curves) by the total wall clock time. The solid, dashed and
dashed-dotted curves are associated with ”simulation”, ”IO” and ”wait” time of NEST.
The solid and dashed line is associated with ”simulation” and ”IO” time of TVB. c The
different timer for NEST simulator. Each contribution is reported as red curves in function
of number of neurons. The solid, dashed and dashed-dotted curves represent ”simulation”,
”IO” and ”wait” time of NEST, respectively.

Frontiers 77

Kusch et al.

2 4 6 8 10 12
0

200

400

600

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Time of the co-simulation

only MPI
only Thread
Thread and 2 MPI
Thread and 4 MPI

2 4 6 8 10 12
0

100

200

300

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Time of NEST IO

only MPI
only Thread
Thread and 2 MPI
Thread and 4 MPI

2 4 6 8 10 12
0

100

200

300

400

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Time of NEST simulation

only MPI
only Thread
Thread and 2 MPI
Thread and 4 MPI

2 4 6 8 10 12
Number of virtual processes of NEST

0

20

40

60

80

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Time of TVB simulation

only MPI
only Thread
Thread and 2 MPI
Thread and 4 MPI

a

b

c

d

Figure 19. Details of the performance depending on the number of processes and threads
for NEST
Performance is obtained for 1 second of simulated time on a computer (see Materials and
Methods for more details). The reference implementation uses 1 MPI process, 6 virtual
processes/threads, 2.0 ms to synchronize time between simulators for the simulation of
20000 neurons. Simulation time depends on the number of virtual processes used by NEST.
The cyan, blue, purple, and red curves are associated with different parallelization strategies
of NEST, respectively, only multithreading, 2 MPI processes with threads, 4 MPI processes
with thread and only MPI processes. The horizontal blue line represents the number of
cores of the computer a The total time of the co-simulation. b The ”IO” time of NEST c
The ”simulation” time of NEST d The ”simulation” time of TVB

Frontiers 78

Kusch et al.

1 2 3 4 5 6 7 8 9

0

500

1000

1500

2000

2500

W
al

l c
lo

ck
 ti

m
e

of
 th

e
si

m
ul

at
io

n
in

 s

Time of the co-simulation

TR multithreading
TR multiprocessing

1 2 3 4 5 6 7 8 9

0

50

100

150

200

W
al

l c
lo

ck
 ti

m
e

of
 th

e
si

m
ul

at
io

n
in

 s

Time of NEST IO

TR multithreading
TR multiprocessing

1 2 3 4 5 6 7 8 9

0

500

1000

1500

2000

W
al

l c
lo

ck
 ti

m
e

of
 th

e
si

m
ul

at
io

n
in

 s

Time of NEST simulation

TR multithreading
TR multiprocessing

1 2 3 4 5 6 7 8 9

Number of virtual processes of NEST

0

20

40

60

80

100

W
al

l c
lo

ck
 ti

m
e

of
 th

e
si

m
ul

at
io

n
in

 s

Time of TVB simulation

TR multithreading
TR multiprocessing

A

B

C

D

Figure 20. Compare the performance depending on parallelization strategies of the
transformer modules
Performance is obtained for 1 second of simulated time on a computer (see Materials and
Methods for more details). The reference implementation uses 1 MPI process, 2.0 ms to
synchronize time between simulators for the simulation of 20000 neurons. Simulation time
depends on the number of virtual processes used by NEST and the parallelization strategies
of the transformer module (multiprocessing or multithreading). The cyan and red curves
are associated with different parallelization strategies of the transfer module, respectively
multiprocessing and multithreading. The horizontal blue line represents the number of
cores of the computer a The total time of the co-simulation. b The ”IO” time of NEST c
The ”simulation” time of NEST d The ”simulation” time of TVB

Frontiers 79

Kusch et al.

104 105
0

250

500

750

1000

1250

1500

1750

2000

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Co-simulation
NEST simulation
NEST IO
NEST wait
TVB simulation
TVB IO

104 105
0

20

40

60

80

100

St
ac

k
of

 p
er

ce
nt

ag
e

of
sim

ul
at

ed
 ti

m
e

NEST simulation
NEST IO
NEST wait
TVB simulation
TVB IO
Co-simulation

104 105
0

100

200

300

400

500

600

700

800

W
al

l c
lo

ck
 ti

m
e

of
th

e
di

ffe
re

nt
 N

ES
T

fu
nc

tio
ns

 in
 s

NEST IO
NEST wait
NEST simulation

a b

c

number of neurons simulated with NEST

Figure 21. Performance of the co-simulation on a supercomputer for different number of
neurons
Performance is obtained for 1 second of simulated time on a computer. The reference
implementation uses 1 MPI process, 6 virtual processes/threads, 2.0 ms to synchronize
time between simulators for the simulation of 20000 neurons. The node of Jusuf, the
supercomputer, content 2 AMD EPYC 7742 @ 2.25 GHz * 64 cores * 2 threads, 256
(16x16) GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6). The
transfer modules and TVB are on one node, and NEST is on one or multiple other nodes.
Simulation time depends on the number of neurons simulated with NEST. a The wall clock
time of the simulator depends on the number of neurons. The total time of the co-simulation
is represented in yellow. The ”simulation”, ”IO” and ”wait” times of NEST are represented
in the red surface with respectively hatches of big circles, small circles and points. The
”simulation” and ”IO” times of TVB are represented in the blue surface with respective
hatches of horizontal lines and oblique lines. The ”simulation” time for TVB is constant.
The sum of ”simulation” and ”IO” time of NEST is higher than the TVB ”simulation”. b
The wall clock time for the co-simulation (yellow curve), NEST (red curves) and TVB
(blue curves) by the total wall clock time. The solid, dashed and dashed-dotted curves are
associated with ”simulation”, ”IO” and ”wait” time of NEST. The solid and dashed line is
associated with ”simulation” and ”IO” time of TVB. The initialisation and configuration
time increase with the number of neurons. c The contribution of NEST module to the
total amount of the wall clock time normalizes between 0 and 100. Each contribution is
reported as red curves in function of number of neurons. The solid, dashed and dashed-
dotted curves represent ”simulation”, ”IO” and ”wait” time of NEST, respectively. The ”IO”
time of NEST increases exponentially with the number of neurons and is higher than the
”simulation time when the number of neurons is higher than 6*1e4 of neurons.
Frontiers 80

Kusch et al.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

W
al

l c
lo

ck
 ti

m
e

of
 th

e
sim

ul
at

io
n

in
 s

Co-simulation
NEST simulation
NEST IO
NEST wait
TVB simulation
TVB IO

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

20

40

60

80

100

St
ac

k
of

 p
er

ce
nt

ag
e

of
sim

ul
at

ed
 ti

m
e NEST simulation

NEST IO
NEST wait
TVB simulation
TVB IO
Co-simulation

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

250

500

750

1000

1250

1500

1750

W
al

l c
lo

ck
 ti

m
e

of
th

e
di

ffe
re

nt
 N

ES
T

fu
nc

tio
ns

 in
 s

NEST IO
NEST wait
NEST simulation

a b

c

time of synchronization between NEST and TVB (in ms)

Figure 22. Performance of the co-simulation on a supercomputer for different time of
synchronization between simulator
Performance is obtained for 1 second of simulated time on a computer. The reference
implementation uses 1 MPI process, 6 virtual processes/threads, 2.0 ms to synchronize
time between simulators for the simulation of 20000 neurons. The node of Jusuf, the
supercomputer, content 2 AMD EPYC 7742 @ 2.25 GHz * 64 cores * 2 threads, 256
(16x16) GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6). The
transfer modules and TVB are on one node, and NEST is on one or multiple other nodes.
Simulation time depends on the synchronized time between simulators. a The wall clock
time of the simulator. The simulation time reduces with the increase of the synchronization
time between simulators. This reduction is due to the reduction of NEST ”IO” time. The
total time of the co-simulation is represented in yellow. The ”simulation”, ”IO” and ”wait”
times of NEST are represented in the red surface with respectively hatches of big circles,
small circles and points. The ”simulation” and ”IO” times of TVB are represented in the
blue surface with respective hatches of horizontal lines and oblique lines. The ”simulation”
time for TVB is constant. The sum of ”simulation” and ”IO” time of NEST is higher
than the TVB ”simulation”. b The wall clock time for different co-simulation modules
normalized by the total wall clock time. All the curves are shown for an increase in the
synchronized time between simulators. c The contribution of NEST module to the total
amount of the wall clock time normalizes between 0 and 100. Each contribution is reported
as red curves in function of synchronized time. The reduction follows a logarithm function.

Frontiers 81

Kusch et al.

2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600
W

al
l c

lo
ck

 ti
m

e
of

 th
e

sim
ul

at
io

n
in

 s

Co-simulation
NEST simulation
NEST IO
NEST wait
TVB simulation
TVB IO

2 4 6 8 10
0

20

40

60

80

100

St
ac

k
of

 p
er

ce
nt

ag
e

of
sim

ul
at

ed
 ti

m
e NEST simulation

NEST IO
NEST wait
TVB simulation
TVB IO
Co-simulation

2 4 6 8 10
0

200

400

600

800

1000

1200

W
al

l c
lo

ck
 ti

m
e

of
th

e
di

ffe
re

nt
 N

ES
T

fu
nc

tio
ns

 in
 s

NEST IO
NEST wait
NEST simulation

a b

c

number of node use by NEST (1 MPI per node)

Figure 23. Performance of the co-simulation on a supercomputer for different number of
node for NEST
Performance is obtained for 1 second of simulated time on a computer. The reference
implementation use 1 MPI process, 6 virtual processes/threads, 2.0 ms to synchronize
time between simulator for the simulation of 20000 neurons. The node of Jusuf, the
supercomputer, content 2 AMD EPYC 7742 @ 2.25 GHz * 64 cores * 2 threads, 256
(16x16) GB DDR4 with 3200 MHz, connected by InfiniBand HDR100 (Connect-X6). The
transfer modules and TVB are on one node, and NEST is on one or multiple other nodes.
Simulation depends on the number of nodes used by NEST. a The wall clock time of the
simulator as a function of the number of nodes used by NEST. The increase of the nodes
creates overhead communication in side NEST because the network is small. Moreover,
the minimum delay in the network is the same as the integration step, which creates an
overhead of communication in NEST simulation. The wall clock time of the simulator
depends on the number of neurons. The total time of the co-simulation is represented in
yellow. The ”simulation”, ”IO” and ”wait” times of NEST are represented in the red surface
with respectively hatches of big circles, small circles and points. The ”simulation” and ”IO”
times of TVB are represented in the blue surface with respective hatches of horizontal lines
and oblique lines. The ”simulation” time for TVB is constant. The sum of ”simulation”
and ”IO” time of NEST is higher than the TVB ”simulation”. b The wall clock time for
different co-simulation modules normalized by the total wall clock time. c The contribution
of NEST module to the total amount of the wall clock time normalized between 0 and 100.
The NEST ”IO” time remains constant with the increase in number of nodes.

Frontiers 82

Kusch et al.

NEST

simulation nest

initialisation

run

prepare

pre-run
174.3706114
60%

simulation kernel nest
98.68672895
34%

TVB

simulation

initialisation

receive data

run simulation
55.47548771
19%

receive time
221.9300079
77%

TVB_NEST_0: Producer NEST data

simulation

initialisation

receive end run
106.4673636
37%

send spikes

receive spikes
76.87163138
27%

get internal spikes

reshape read buffer
69.8876183
24%

TVB_NEST_0: Transformer function

simulation

initialisation

get rate

generate spikes
71.99019599
25%

send spike trains

wait read buffer
161.7385995
56%

wait
write buffer
39.28669
14%

reshape data
5.367176294
2%

TVB_NEST_0: Consumer TVB data

simulation

initialisation

receive time
273.592706
94%

send check
2.315177441
1% get rate

transfer end
0.3091630936
0.107%

TVB_NEST_1: Producer NEST data

simulation

initialisation

receive end run
196.9444599
68%

send spikes

receive spikes0.050469875340.0174%

reshape read buffer
54.20687675
19%

TVB_NEST_1: Transformer function

simulation

initialisation

get rate

generate spikes
54.92798686
19%

send spike trains

end connection

wait read buffer
212.9607193
73%

wait
write buffer
5.866228819
2%

reshape data
4.640323639
2%

TVB_NEST_1: Consumer TVB data

simulation

initialisation

receive time
273.8075354
94%

send check
2.184341431
1% get rate

transfer end
0.2841846943
0.098%

NEST_TVB_0: Consumer NEST data

simulation

initialisation

get spikes
272.7021818
94%

NEST_TVB_0: Transformer function

simulation

initialisation

ready to get data

wait read buffer
277.4625933
96%

NEST_TVB_0: Producer TVB data

simulation

initialisation

get rate and time

receive check
56.36234903
19%

wait read buffer
221.4430101
76%

NEST_TVB_1: Consumer NEST data

simulation

initialisation

get spikes
272.6302724
94%

NEST_TVB_1: Transformer function

simulation

initialisation

ready to get data

wait read buffer
278.1221235
96%

NEST_TVB_1: Producer TVB data

simulation

initialisation

receive check
277.6958172
96%

Figure 24. Details of the timer of one run for the reference configuration
This tree-map represents the timer for each component of the transfer module and for the
modules NEST and TVB at the top. The orange bar under each box represents the time
required for the initialisation. Each rectangle represents the time spent on each specific
piece of code.

Frontiers 83

Kusch et al.

0

20

40

Ne
ur

on
 ID

0 500 1000time in ms

0

25

50

Ra
te

 (H
z)

NEST

0 500 1000time in ms

2

4

6

8

10

12

Ra
te

 (H
z)

TVB

0

50

100

Ne
ur

on
 ID

0 500 1000time in ms

0

100

Ra
te

 (H
z)

NEURON

0 500 1000time in ms

0

20

40

60

80

Ra
te

 (H
z)

Neurolib

0

20

40

Ne
ur

on
 ID

0 1000time in ms

0

25

50

Ra
te

 (H
z)

0 1000time in ms

2

4

6

8

10

12

Ra
te

 (H
z)

Co-simulation NEST-TVB

0

50

100

Ne
ur

on
 ID

0 1000time in ms

0

50

100

Ra
te

 (H
z)

0 1000time in ms

0

20

40

60

80

Ra
te

 (H
z)

Co-simulation NEURON-NEUROLIB

0

20

40

Ne
ur

on
 ID

0 1000time in ms

0

25

50

Ra
te

 (H
z)

0 1000time in ms

0

20

40

60

80

Ra
te

 (H
z)

Co-simulation NEST-NEUROLIB

0

50

100

Ne
ur

on
 ID

0 1000time in ms

0

50

100

Ra
te

 (H
z)

0 1000time in ms

0.0

2.5

5.0

7.5

10.0

Ra
te

 (H
z)

Co-simulation NEURON-TVB

Figure 25. Proof of concept of replacing NEST and TVB with other simulators
For spiking neuron simulators (NEST and NEURON), the simulation output is the spike
train of neurons (top graphic) and the firing rate of the population (bottom graphic:
histogram of spike count with a bin of 10 ms). For neural mass simulators (TVB and
Neurolib), the simulation output is the mean firing rate of the excitatory population.
The first row shows different examples without co-simulation on other simulators. One
remark about the network used in NEURON, this network without external stimulation
doesn’t have any activities. The second and third rows display the result of the coupling
example together simulated using co-simulation. The co-simulation results show the
interaction of examples between them and the possibility of simulating these four different
multiscale examples. The code is available here: https://github.com/multiscale-cosim/TVB-
NEST-demo/tree/proof-concept
Frontiers 84

Kusch et al.

SUPPLEMENTARY REFERENCE

1 .[Dataset] Hahne J, Diaz S, Patronis A, Schenck W, Peyser A, Graber S, et al. NEST 3.0
(2021). doi:10.5281/zenodo.4739103.

2 .Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-
scale brain network modeling in the virtual brain. NeuroImage 111 (2015) 385–430.
doi:10.1016/j.neuroimage.2015.01.002.

3 .[Dataset] Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H. Co-simulation: A
survey (2018).

4 .Chopard B, Borgdorff J, Hoekstra AG. A framework for multi-scale modelling.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 372 (2014) 20130378. doi:10.1098/rsta.2013.0378. Publisher:
Royal Society.

5 .Taveres-Cachat E, Favoino F, Loonen R, Goia F. Ten questions concerning co-simulation
for performance prediction of advanced building envelopes. Building and Environment
191 (2021) 107570. doi:10.1016/j.buildenv.2020.107570.

6 .Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, et al.
The virtual brain: a simulator of primate brain network dynamics. Front. Neuroinform. 7
(2013) 10. doi:10.3389/fninf.2013.00010.

7 .Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity. Journal of Neurophysiology 94 (2005) 3637–3642.
doi:10.1152/jn.00686.2005.

8 .Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, Albada V, et al. Hybrid
scheme for modeling local field potentials from point-neuron networks. Cereb. Cortex 26
(2016) 4461–4496. doi:10.1093/cercor/bhw237.

9 .Shuman T, Aharoni D, Cai DJ, Lee CR, Chavlis S, Page-Harley L, et al. Breakdown
of spatial coding and interneuron synchronization in epileptic mice. Nat. Neurosci. 23
(2020) 229–238. doi:10.1038/s41593-019-0559-0.

10 .Melozzi F, Woodman MM, Jirsa VK, Bernard C. The virtual mouse brain: A
computational neuroinformatics platform to study whole mouse brain dynamics. eNeuro
4 (2017) ENEURO.0111–17.2017. doi:10.1523/ENEURO.0111-17.2017.

11 .Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, et al. A mesoscale connectome
of the mouse brain. Nature 508 (2014) 207–214. doi:10.1038/nature13186.

12 .di Volo M, Romagnoni A, Capone C, Destexhe A. Biologically realistic mean-field
models of conductance-based networks of spiking neurons with adaptation. Neural
Computation 31 (2019) 653–680. doi:10.1162/neco a 01173.

Frontiers 85

Kusch et al.

13 .Kuhn A, Aertsen A, Rotter S. Higher-order statistics of input ensembles and the
response of simple model neurons. Neural Computation 15 (2003) 67–101. doi:10.1162/
089976603321043702.

Frontiers 86

