

Supplementary Material

Genome-wide association analysis provides insights into the genetic basis of photosynthetic responses to low-temperature stress in spring barley

Ammar Elakhdar^{1,2,*}, Jan J. Slaski³, Takahiko Kubo², Aladdin Hamwieh, Aaron D. Beattie⁴, Ludovic J.A. Capo-chichi⁵

* Correspondence:

Ammar Elakhdar a.elakhdar@kyudai.jp

Supplementary Figure 1: Temperature variation during cold acclimation treatment (A) and freezing shock (B) of 96 spring barley lines and 4 winter barley lines at the three-leaf stage.

HORVU1Hr1G087520

SUMO transferase activity [GO:0019789] | zinc ion binding [GO:0008270]

HORVU3Hr1G071210

hydrolase activity, hydrolyzing O-glycosyl compounds [GO:0004553]

HORVU3Hr1G071240

ATP binding [GO:0005524] | protein kinase activity [GO:0004672]

HORVU6Hr1G005960 DNA binding [GO:0003677] | protein heterodimerization activity [GO:0046982]

HORVU3Hr1G059320 ATP hydrolysis coupled proton transport [GO:0015991]

HORVU3Hr1G061690 Protein DEHYDRATION-INDUCED 19 homolog 3

HORVU3Hr1G062030

Rho guanyl-nucleotide exchange factor activity [GO:0005089]

HORVU3Hr1G063220 mRNA splicing, via spliceosome [GO:0000398] | regulation of embryo sac egg cell differentiation [GO:0045694]

HORVU1Hr1G085880 signal transduction [GO:0007165]

Supplementary Figure 2: Gene co-expression for the identified genes was revealed form the Global gene co-expression networks (GCNs) database PlantNexus (https://plantnexus.ohio.edu).

Supplementary Table 1. List of crosses made between spring and winter barley types.

Cross		Spring genotypes		Winter genotypes
3	9	Meredith	3	02Ab431
4		AC Metcalfe	3	02Ab08-X05W061-208
5	2	TR643	3	02Ab671
6	Ŷ	TR990	3	02Ab431
11	\$	TR162	3	02Ab671
12	Ŷ	TR490	3	02Ab671
13	Ŷ	TR05912	3	02Ab08-X05W061-208
14	Ŷ	CDC Reserve	₹0 ₹0 ₹0	02Ab431
15	Ŷ	Meredith	3	02Ab08-X05W061-208
16	Ŷ	TR643	3	02Ab08-X05W061-208
17	Ŷ	TR490	3	02Ab08-X05W061-208
18	0+0+0+0+0+0+0+0+0+0+0+0+	AC Metcalfe	3	02Ab431
		Winter genotypes		Spring genotypes
1	2	02Ab669	8	TR990
2	Ŷ	02Ab431	8	TR5287
7	0+0+0+0+0+	02Ab08-X05W061	3	CDC Reserve
8	Ŷ	02Ab431	3	AC Metcalfe
9	Ŷ	02Ab431	3	Benthey
10	Ŷ	02Ab08-X05W061	3	AC Metcalfe

