Supporting Information
Biodiversity survey and estimation for line-transect sampling


Mathematical foundation of the proposed statistical model
Some basic statistical properties

Some key formulas, which are necessary for deriving the unbiased non-independent strength parameter, are provided below. For any integer , proofs for these key formulas can be easy, and thus omitted for brevity. 
1)  
   2) , where         
Note that Eqs. S1a and S1b are directly from transition probabilities of the Markov model in Eq. 2 of the main text.
3)                     
4) .	
Eqs. S1c and S1d can be straightforwardly derived from Eqs. S1a and S1b. Because the sampling of the first individual along a line transect is random and proportional to species’ relative abundances, we have . For the second sampled individual, based on the above equalities (Eqs. S1a-S1d), we can derive the probability of the individual belonging to species  as
5)      
The result   for any integer   can be derived from mathematical induction. 

Derivation of sampling variance of the proposed model
	When sampling m individuals along a transect, the number of individuals being sampled for species i is denoted by , for which we can further express it in terms of species labels of the individuals  as follows:

where  if the kth sampled individual is from species i; , otherwise. 
Its variance thus can be calculated by

As shown previously in Eq. S1e, , thus we have
 	   (S4)
Further,
[bookmark: _Hlk142773017]	
where the calculation of followed the standard Markov matrix property, after some tedious algebra, one can show that,
	
Therefore, substituting the results in Eqs. S4 and S5 into Eq. S3 leads to


in which, for a large m, we suggest an approximate and simple formula is
,	    				           (S7)
where we define  for simplicity.

Derivation of Eq. 8 of the main text

To show the result in Eq. 8 of the main text, using

along with the result in Eq. S6 gives

as a consequence, we have

from which the desired result in Eq. 8 of the main text is evident and shown below

After removing the expectation operator, suppose we have found an estimator for the parameter  or , the proposed estimator for  becomes .

Derivation of sampling covariance of the proposed model
	The covariance of abundance between two species i and j in the line-transect sampling under the Markov model is given by,

.	
Using the property of Markov transition probabilities and after some algebra manipulation, one can show that


for , from which, for a large m, we have


The last equality of Eq. S13 is the result of Eq. 4 in the main text, for which it is also one of the key formulas in our study. 

Derivation of the proposed new Rao’s quadratic diversity index
Based on the above derivation in Eq. S8, we can see that , from which we can derive a nearly unbiased estimator of the Rao’s quadratic diversity index, under the Markov model context, by

Therefore, after removing the expectation operator, if we can find an estimator for , we can derive the unbiased Rao’s quadratic diversity index under the non-independent sampling scenario as

The above equation is Eq. 10 in the main text. The associated Simpson index can be derived accordingly by assuming , which is actually the complement of Eq. 8 of the main text or the estimated  as showed above in Eq. S10. Specifically, to show this, when  in Eq. S15,


Derivation of Eq. 9 of the main text	
Using some key formulas (Eqs. S1a-S1e) introduced in the first place, we can also easily prove Eq. 7 in the main text as follows. Taking expectation of Eq. 6 gives

Therefore, Solow (2000)’s estimator v tended to overestimate the true  value, because of the confounding influence of . However, as remarked in the main text, Solow (2000)’s estimator  is still useful for deriving the proposed unbiased estimator of the true  and valid for some cases (e.g.,  is small). 
To give the derivation of the proposed estimator of , we merge two estimating equations (Eq. 7 and 8 in the main text) into a single one as 

that only gets the estimator involved. As a result, we can solve it as

where . This is Eq. 9 in the main text.

Unification of Rao's quadratic diversity index and Nei's genetic diversity
	In molecular ecology and genetics, Nei's nucleotide diversity and haplotype diversity indices are two of the most widely applied indices (Nei 1973, 1987, Nei and Li 1979, Nei and Kumar 2000). Actually they are termed as Rao’s quadratic diversity index and unbiased Simpson index, respectively, as proved below (Simpson 1949, Rao 1982, Nayak 1986, Botta-Dukat 2005, Chen et al. 2018). 
	The power of these two indices relies on the fact that they are unbiased estimators (Pons and Petit 1996, Hardy and Senterre 2007, Meirmans and Hedrick 2011), which is particularly true under large sample sizes. However, despite of its robust statistical property and wide application, a hidden issue is that organism sampling for genetic, molecular and ecological studies is that individuals are assumed to be independent. Both nucleotide and haplotype diversity indices are also established on the basis of this independent sampling assumption. This implies that, when field sampling is conducted in non-random ways, the conventional calculation of nucleotide diversity and haplotype diversity indices might become misleading or at least inaccurate. 
	In the calculation of traditional haplotype and nucleotide diversity indices, suppose among the H different haplotypes, their observed abundances in the sampled line transect with m individuals is given as , again we have . Then, the observed relative abundance of a specific haplotype i can be calculated as , forming a vector as . Then, the haplotype diversity index, under the context of random sampling of organisms, can be calculated as (Nei and Tajima 1981),

	Suppose the observed site difference between a pair of haplotypes (i and j) is given by , then the traditional nucleotide diversity index, under the context of random sampling of organisms, is calculated as (Nei and Li 1979, Nei 1987),

	This formula is identical to Rao's quadratic diversity metric as shown in Eq. 5 of the main text by setting the distance metrics , . By plugging observed relative abundance values into the formulae. In such a case, . 
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Additional Tables and Figures
Table S1. A comparison on the fitted Markov non-independent parameter using Solow’s original estimator and the proposed one in the semi-numerical test in which the biomass information of 26 plant species in ultramafic soils of central Italy was used. 
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Table S2. Performance comparison between the proposed Rao’s estimator (Eq. 10) accounting for non-independent sampling of subsequent individuals, the original and unbiased Rao’s indices that only assume totally independent sampling of individuals if the sampling of individuals from the studied ecological community (i.e., 26 plant biomasses in ultramafic soils of central Italy) is assumed to be sequentially non-independent. 
 [image: ]













Table S3. Performance comparison between the proposed Gini-Simpson estimator (Eq. 8) accounting for non-independent sampling of subsequent individuals, the original and unbiased Gini-Simpson indices that only assume totally independent sampling of individuals if the sampling of individuals from the studied ecological community (i.e., 26 plant biomasses in ultramafic soils of central Italy) is assumed to be sequentially non-independent. 
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Table S4. Performance comparison between the proposed Gini-Simpson estimator (Eq. 8) accounting for non-independent sampling of subsequent individuals, the original and unbiased Gini-Simpson indices that are only valid for totally independent sampling of individuals if the sampling of individuals from the studied ecological community (i.e., 34 bat Phyllostomid genus abundances in Selva lacandona habitats) is assumed to be sequentially non-independent. 
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Table S5. Estimate average, averaged bias (BIAS), and RMSE of the ML (maximum likelihood), unbiased Rao’s index, and the proposed estimators in the tree data sampled from the line transects in the 50-ha BCI forest plot.
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Table S6. Estimate average, averaged bias (BIAS), and RMSE of the ML (maximum likelihood), unbiased Rao’s index, and the proposed estimators in the tree data sampled from the line transects in the 50-ha HSD forest plot.
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Table S7. Estimate average, averaged bias (BIAS), and RMSE of the ML (maximum likelihood), unbiased Rao’s index, and the proposed estimators from the line transects in the territory of Australia for Acacia species.
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MLE: Q(p) Unbiased: QU (p) Proposed: QM (p)

m us

Avg BIAS RMSE Avg BIAS RMSE Avg BIAS RMSE

Plant community in Italy: Q(p) = 144.8
50 0.10 141.3 —=3.5 56 1442 —-0.6 4.6 145.0 0.1 4.6

75 1425 =23 41 1444 04 3.5 1448 0.0 3.5
100 143.0 -1.8 34 1444 —-04 29 1448 —-0.0 2.9
125 1434 —-14 29 1445 03 2.6 1448 —0.0 2.6

50 0.25 140.1 —4.7 71 1430 -138 5.8 145.0 0.2 5.6

75 141.7 =31 52 1436 -—12 44 1449 0.1 4.3
100 1424 24 4.2 1439 -09 3.7 1449 0.1 3.6
125 1429 -19 3.6 1440 0.8 3.2 144.8 0.0 3.1

50 0.40 1383 —6.5 9.2 1411 =37 7.6 1453 0.5 7.1

75 140.3 —4.5 6.9 1422 26 5.9 1449 0.1 5.5
100 1414 -34 5.5 1428 2.0 4.8 1448 —-0.0 44
125 142.1 =27 46 1433 —1.5 4.1 1449 0.1 3.8

50 0.55 1352 9.6 13.0 1379 —-6.9 11.3 1458 1.0 9.9

75 1384 6.4 9.1 1402 —4.6 8.0 1453 0.5 7.0
100 140.0 —4.8 72 1414 34 6.4 145.1 0.3 5.6
125 140.9 -39 6.1 1420 238 5.5 1449 0.1 49

50 0.70 129.7 —-15.1 19.7 1323 -12.5 17.9 148.8 4.0 16.9

75 1344 -10.4 13.7 1363 -85 12.5 146.2 1.4 10.4
100 136.8 —8.0 11.1 1382 —6.6 10.2 1454 0.6 8.4

125 1384 —6.4 9.2 1395 =53 8.5 145.2 0.4 7.1
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MLE: A Unbiased: Ay Proposed: Ay

Avg BIAS RMSE Avg BIAS RMSE Avg BIAS RMSE

Plant community in Italy: A = 0.838
50 0.10 0.818 —0.019 0.039 0.835 —0.003 0.034 0.839 0.001 0.035

75 0.824 —-0.013 0.030 0.836 —0.002 0.027 0.838  0.000  0.027
100 0.827 —0.011  0.025 0.836 —0.002 0.023 0.838 —0.000 0.023
125 0.829 —0.009 0.022 0.836 —0.002 0.021 0.837 —0.000 0.021

50 0.25 0.811 —0.027  0.048 0.827 —0.011  0.042 0.839  0.001  0.041

5 0.820 -0.018  0.037 0.831 -0.007 0.033 0.839  0.001  0.033
100 0.824 —0.013  0.031 0.833 —0.005 0.028 0.838  0.001  0.028
125 0.827 —0.011  0.027 0.834 —0.004 0.025 0.838  0.000 0.025

50 0.40 0.800 —0.038 0.060 0.817 —0.021  0.052 0.841 0.003  0.050

5 0.812 —0.026 0.047 0.823 —0.015 0.042 0.838  0.001  0.041
100 0.818 —0.020 0.038 0.826 —0.012 0.035 0.837 —0.000 0.034
125 0.822 —0.015 0.033 0.829 —0.009 0.030 0.838  0.000  0.030

50 0.55 0.782 —0.056  0.081 0.797 -0.040 0.072 0.843  0.005  0.065

75 0.801 —0.037 0.058 0.812 —0.026  0.053 0.841 0.004  0.049
100 0.810 —0.027 0.048 0.819 —0.019 0.044 0.840  0.002 0.041
125 0.815 —0.023 0.042 0.821 —-0.017 0.040 0.838  0.000  0.037

50 0.70 0.749 -0.088 0.118 0.765 -0.073  0.109 0.860  0.022  0.103
75 0.777 —0.061  0.085 0.788 —0.050  0.079 0.845  0.008  0.069
100 0.791 —0.046  0.070 0.799 —0.038 0.066 0.841 0.003  0.057
125 0.800 —0.037  0.060 0.807 -0.031 0.057 0.840  0.002  0.051
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MLE: A Unbiased: AU Proposed: AM

Avg BIAS RMSE Avg BIAS RMSE Avg BIAS RMSE

Bat data in Selva lacandona habitats: A = 0.968
50 0.10 0.945 —0.024 0.025 0.964 —0.004 0.009 0.968  0.000 0.008

75 0.953 —0.016  0.017 0.965 —0.003  0.006 0.968  0.000  0.005
100 0.956 —0.012  0.013 0.966 —0.002 0.005 0.968  0.000 0.004
125 0.959 —0.010 0.010 0.967 —0.002 0.004 0.968 —0.000 0.004

50 0.25 0936 —0.032 0.034 0.955 -0.013 0.017 0.969  0.001 0.010

5 0.947 —0.021  0.023 0.960 —0.009 0.011 0.969  0.000 0.007
100 0.952 —0.016 0.017 0.962 —0.006 0.009 0.968  0.000  0.006
125 0.956 —0.013  0.014 0.963 —0.005 0.007 0.968  0.000 0.005

50 0.40 0924 -0.044 0.046 0943 —0.025 0.029 0.971 0.002  0.014

5 0.939 —0.030 0.031 0.951 -0.017 0.020 0.969  0.001  0.010
100 0.946 —0.022 0.024 0.956 —0.013 0.015 0.969  0.001  0.007
125 0.950 —0.018 0.019 0.958 —0.010 0.012 0.969  0.000  0.006

50 0.55 0.904 —0.064 0.068 0.922 —-0.046 0.051 0.974  0.006 0.022

75 0.925 —0.043 0.046 0.937 -0.031 0.034 0.971 0.002  0.015
100 0935 —0.033 0.035 0.945 —0.024 0.026 0.969 0.001 0.011
125 0.942 —0.026  0.028 0.950 —-0.019 0.021 0.969  0.001  0.009

50 0.70 0.865 —0.103 0.111 0.883 —0.086 0.095 0.98  0.018  0.047
75 0.898 —0.071  0.075 0.910 -0.059 0.064 0.975  0.007  0.026
100 0915 —0.053 0.056 0.924 —-0.044 0.048 0.972  0.004 0.019
125 0.925 —-0.043 0.045 0.933 —0.035 0.038 0.971 0.002  0.015
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ML estimator

Unbiased estimator

Proposed estimator

m 7
Avg BIAS RMSE Avg BIAS RMSE Avg BIAS RMSE
BCI forest plot
Rao’s diversity index: Q(p) = 238.0
50 0.039 2322 —5.8 16.0 236.9 —-1.0 15.3 2374 —0.6 15.3
100 0.041 234.0 —3.9 11.3 2364 —1.6 10.8 236.6 —1.4 10.8
500 0.045 236.3 —-1.7 5.5 236.8 —-1.2 54 236.8 —-1.2 5.4
1000 0.046 236.5 —1.5 4.1 236.7 —-1.3 4.0 236.8 —-1.2 4.0
2000 0.046 236.8 —1.2 3.0 236.9 —1.0 3.0 237.0 —-1.0 3.0
5000 0.047 237.0 -1.0 2.0 237.0 -1.0 2.0 2370 -1.0 2.0
8000 0.047 237.0 -1.0 1.7 237.0 -1.0 1.7 237.0 -1.0 1.7
Gini-Simpson’s index: A = 0.942
50 0.039 0915 —0.028 0.041 0.933 —0.009 0.032 0.935 —0.007 0.032
100 0.041 0.926 —0.017 0.026 0.935 —0.007 0.022 0.936 —0.006 0.021
500 0.045 0.937 —-0.005 0.010 0.939 —-0.003 0.009 0.939 —-0.003  0.009
1000 0.046 0.939 —0.003 0.007 0.940 —0.002 0.007 0.940 —-0.002  0.007
2000 0.046 0.940 —-0.002  0.005 0.940 —0.002  0.005 0.940 —0.002  0.005
5000 0.047 0.940 —-0.002  0.003 0.941 —0.002 0.003 0.941 -—0.002  0.003
8000 0.047 0.941 —0.002 0.003 0.941 —0.002 0.003 0.941 —0.002  0.003
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ML estimator

Unbiased estimator

Proposed estimator

m T
Avg BIAS RMSE Avg BIAS RMSE Avg BIAS RMSE
HSD forest plot
Rao’s diversity index: Q(p) = 282.1
50 0.259 261.0 —21.1 314 2664 —15.7 28,5 2705 —11.6 26.0
100 0.265 269.5 —12.6 19.9 272.2 -9.9 18.5 274.3 -7.8 17.4
500 0.266 278.7 —3.4 6.6 279.3 —-2.8 6.3 279.7 —2.4 6.2
1000 0.267 280.0 —2.1 4.5 280.3 -1.8 4.4 280.5 -1.6 4.3
2000 0.268 280.8 -1.3 3.1 280.9 —-1.2 3.0 281.0 -1.1 3.0
5000 0.269 281.1 —-1.0 2.0 281.2 —-0.9 2.0 281.2 -0.9 2.0
8000 0.269 281.3 -0.8 1.6 281.3 -0.8 1.6 281.3 -0.8 1.6
Gini-Simpson’s index: A = 0.972
50 0.259 0.904 —0.068 0.081 0.922 —-0.050 0.067 0.937 —0.035 0.055
100 0.265 0.933 —0.039 0.046 0.943 —0.030 0.039 0.950 —0.022  0.033
500 0.266 0.963 —0.009 0.012 0.965 —0.007 0.011 0.966 —0.006 0.010
1000 0.267 0.967 —0.006 0.008 0.967 —0.005 0.008 0.968 —0.004 0.007
2000 0.268 0.969 —0.003 0.005 0.969 —0.003 0.005 0.970 —0.002  0.005
5000 0.269 0.970 —0.002 0.004 0.970 —0.002 0.004 0.970 —-0.002 0.003
8000 0.269 0.970 —0.002 0.003 0.971 -—0.002 0.003 0.971 —0.001  0.003
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ML estimator

Unbiased estimator

Proposed estimator

m 7
Avg BIAS RMSE Avg BIAS RMSE Avg BIAS RMSE
Australia acacia species data
Rao’s diversity index: Q(p) = 119.8
50 0.284 104.1 —15.7 22.6 106.2 —13.6 21.4 108.2 —11.6 20.6
100 0.298 110.3 -9.5 16.1 1114 -84 15.6 112.4 —74 15.2
500 0.321 116.6 -3.2 7.6 116.9 -2.9 7.5 1171 -2.7 7.4
1000 0.324 118.2 —-1.7 54 118.3 —1.5 54 1184 —1.4 5.4
2000 0.326 118.7 -1.1 3.8 1188 -1.1 3.8 1188 -1.0 3.8
5000 0.327 119.1 -0.7 2.5 119.1 —0.7 2.5 119.2 -0.7 2.5
8000 0.327 119.2 —0.6 2.0 119.3 —0.6 2.0 119.3 —0.5 2.0
Gini-Simpson’s index: A = 0.994
50 0.284 0.925 —0.069 0.083 0.944 —0.050 0.069 0.961 —0.033 0.057
100 0.298 0.953 —0.040 0.048 0.963 —0.031  0.040 0.972 —0.022 0.032
500 0.321 0.982 —0.011 0.013 0.984 —0.009 0.011 0.986 —0.007  0.009
1000 0.324 0.987 —0.006 0.007 0.988 —0.005 0.006 0.989 —0.004 0.005
2000 0.326  0.990 —0.004 0.004 0.990 —0.003 0.004 0.991 —0.003 0.004
5000 0.327 0.991 -0.003 0.003 0.991 -0.002 0.003 0.992 —0.002 0.002
8000 0.327 0.992 —0.002 0.002 0.992 -0.002 0.002 0.992 —0.002 0.002
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image2.png
Solow’s estimator: v

Proposed estimator: 7

m T
Avg BIAS RMSE Avg BIAS RMSE

50 0.10 0.245 0.145 0.159 0.103  0.003  0.067
75 0.246 0.146  0.155 0.101 0.001  0.057
100 0.246 0.146  0.153 0.100  0.000  0.049
125 0.247 0.147  0.153 0.101 0.001  0.045
50 0.25 0.371 0.121  0.141 0.250  0.000  0.082
75 0.371 0.121  0.134 0.250  0.000  0.066
100 0.372 0.122  0.132 0.251 0.001  0.058
125 0372 0.122  0.130 0.250  0.000  0.052
50 0.40 0.497 0.097 0.121 0.400  0.000  0.086
75 0.498 0.098  0.115 0.401 0.001  0.071
100 0.497 0.097  0.109 0.399 —0.001  0.060
125 0.497 0.097  0.107 0.400 —0.000  0.053
50 0.55 0.623 0.073  0.101 0.551 0.001  0.086
75 0.623 0.073  0.093 0.551 0.001  0.070
100 0.623 0.073  0.088 0.550  0.000  0.058
125 0.623 0.073  0.085 0.550  0.000  0.052
50 0.70 0.748 0.048 0.079 0.702  0.002  0.080
75 0.748 0.048 0.070 0.700  0.000  0.064
100 0.748 0.048 0.066 0.700  0.000  0.053
125 0.749 0.049 0.062 0.700  0.000  0.047





