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Both the main text and these supplementary information (SI) are derived from the same R
markdown document available via OSF at https://osf.io/zb8gx/.

1 REQUIRED SOFTWARE

The document was compiled using knitr (Xie, 2021) in RStudio with R:

_
platform aarch64-apple-darwin20
arch aarch64
os darwin20
system aarch64, darwin20
status
major 4
minor 3.0
year 2023
month 04
day 21
svn rev 84292
language R
version.string R version 4.3.0 (2023-04-21)
nickname Already Tomorrow

We used the following R packages to create this document: R (Version 4.3.0; R Core Team, 2021b)
and the R-packages assertthat (Version 0.2.1; Wickham, 2019a), cowplot (Version 1.1.1; Wilke,
2020), data.table (Version 1.14.8; Dowle and Srinivasan, 2021), dplyr (Version 1.1.2; Wickham et
al., 2021a), ggh4x (Version 0.2.4; van den Brand, 2023), ggplot2 (Version 3.4.2; Wickham, 2016),
gridExtra (Version 0.2.3; Auguie & Antonov, 2017), LaplacesDemon (Version 16.1.6; Statisticat
and LLC., 2021), latexdiffr (Version 0.1.0; Hugh-Jones, 2021), linguisticsdown (Version 1.2.0; Liao,
2019), lme4 (Version 1.1.33; Bates et al., 2015), magick (Ooms, 2021), magrittr (Version 2.0.3;
Bache and Wickham, 2020), Matrix (Version 1.5.4; Bates and Maechler, 2021), modelr (Version
0.1.11; Wickham, 2020), MVBeliefUpdatr (Version 0.0.1.2; Kleinschmidt and Jaeger, 2015b), nplyr
(Version 0.2.0; Rieke & Elias, 2023), papaja (Version 0.1.1.9001; Aust and Barth, 2020), processx
(Version 3.8.1; Csárdi and Chang, 2021), purrr (Version 1.0.1; Henry and Wickham, 2020), Rcpp
(Version 1.0.10; Eddelbuettel and François, 2011; Eddelbuettel and Balamuta, 2018), readr (Version
2.1.4; Wickham et al., 2021b), rlang (Version 1.1.1; Henry and Wickham, 2021), stringr (Version
1.5.0; Wickham, 2019b), tibble (Version 3.2.1; Müller and Wickham, 2021), tidyr (Version 1.3.0;
Wickham, 2021b), tidyverse (Version 2.0.0; Wickham et al., 2019), tinylabels (Version 0.2.3; Barth,
2022), and tufte (Version 0.12; Xie and Allaire, 2022).
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Figure S1: Example flyer for recruiting Stockholm Swedish talkers for recording of the SwehVd
database.

2 ADDITIONAL INFORMATION ABOUT THE SWEHVD DATABASEE

2.1 Participant recruitment

Participants were recruited through word-of-mouth, flyers at Stockholm University Campus,
and online channels (accindi.se). Figure S1 is an example of flyers distributed at Stockholm
University Campus. The flyer gives information on criteria for participation, recording procedure,
reimbursement and contact information to experimenter (first author).

2.2 Word list

Word list with all target and filler words, recorded by all talkers in the SwehVd database.
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Table S1. Words recorded by the female talkers of Stockholm Swedish for the SwehVd database

Target words Vowel IPA
hid [iː]
hidd [ɪ]
hyd [yː]
hydd [ʏ]
hed [eː]
hedd [ɛ]
häd [ɛː]
hädd [ɛ]
härd [æː]
härr [æ]
höd [øː]
hödd [ø]
hörd [œː]
hörr [œ]
hud [ʉː]
hudd [ɵ]
hod [uː]
hodd [ʊ]
håd [oː]
hådd [ɔ]
had [ɑː]
hadd [a]

Filler words
titt tand

damm dipp
tå buss
bål ding
dill porr

tugga mitt
mat dopp
norr tal
must namn
pil pall

dina bar
biff till

Tina mål
borr Nina
dal då
Pål nick

nunna ditt
mil dugga
ting mall
ball bil
piff par
tipp morr
puss nav
topp nå

2.3 Unanticipated challenges during recording (and how they were addressed)]

In a small-scale pilot preceding recordings, the expected transparency of the orthography for
eliciting the long and short vowels was confirmed by three native talkers and one non-native talker
of Swedish (these talkers did not participate in the study). However, hodd [ʊ] and hod [uː] sometimes
elicited [ɔ].S1 We therefore decided to add instructions to the participants for these two words.
When hod or hodd appeared on screen, a written guide indicating the target vowel appeared below
the word in smaller font size: “hod som i hot”, “hodd som i hosta”, with hot and hosta being
real Swedish words containing [uː] and [ʊ], respectively.S2 Whenever the experimenter noticed that
the pronunciations clearly targeted another vowel, recordings were stopped and participants were
reminded to carefully read the guide. Despite our recording instructions, five of the talkers rarely
ever produced the targeted [ʊ] vowel. Instead, they often mispronounced the vowel, hence they are
not included in the subsetted SwehVd we use in this study.

2.4 Neutralization of hedd and hädd

For the vast majority of talkers, hädd productions elicited the same vowel as hedd (see Figure S2).
This confirms the common assumption that the short allophone to /e/ neutralizes with the short
allophone to [ɛ] in Central Swedish.

S1 The difficulty for some native talkers to produce [ʊ] when reading hodd might be due to frequency effects. Forms with stressed [ʊ] are
rare in the Swedish language, and phonotactically similar words are most often pronounced as [ɔ] (see e.g., Riad, 2014).
S2 English translations: “hod as in threat”(phonologically [uː]), “hodd as in cough”(phonologically [ʊ]).
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Figure S2: The hedd and hädd words in the SwehVd vowel data in unnormalized F1-F2 space. Points
show recordings of the hedd and hädd words ([ɛ]) by the 24 female native talkers in the database,
averaged across the five measurement points within each vowel segment. Word labels indicate word
means across talkers. Since hädd and hedd resulted in the same allophone, we exclude hädd from
this and all other visualizations below. This facilitates comparison of, for example, densities across
vowels.
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Figure S3: Predicted recognition accuracy of ideal observer under two versions of the Syrdal &
Gopal (1986) account for long vowels, short vowels, and long and short vowels together, shown for
the F1-F2 cue combination. Labels indicate mean across the five test folds. Intervals show average
bootstrapped 95% confidence intervals across the test folds. The dashed horizontal line indicates
chance (different across columns because of the different number of long and short vowels).

3 EVALUATION OF IMPLEMENTATIONS OF SYRDAL & GOPAL’S (1986)
SECOND DIMENSION

For the second dimension, distinguishing between front and back vowels, Syrdal and Gopal (1986)
evaluates two different bark-difference measures: F2-F1 and F3-F2. Previous studies had concluded
that F2-F1 distinguishes between all Swedish vowels (Fant, 1983), however, in Syrdal and Gopal
(1986)’s evaluation of American English, the F3-F2 dimension provided a better fit. Given that
there seems to be language specific effects concerning Syrdal and Gopal (1986)’s second dimension
(e.g., Adank, 2003), here we compare the two difference measures for the vowels in the SwehVd
database.

Figure S3 displays the categorization accuracy for models trained on normalized data under
the two implementations of the Syrdal & Gopal account. The first version uses the F2-F1 bark-
difference metric for the second dimension, whereas the second version (labelled SyrdalGopal2
(Bark)) implements the second dimension as suggested by Syrdal and Gopal (1986), F3-F2. As
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evident from Figure S3, the first implementation performs better at separating categories in the
SwehVd data.

Figure S4 displays the separability index for the two implementations. Mirroring the results
from categorization accuracy, the first implementation using F2-F1 for the second dimension,
outperforms the implementation using F3-F2 bark-difference measure, replicating Fant (1983).
These results taken together indicate that the F2-F1 implementation is more suitable for the
materials used here, we therefore decided to use the first implementation throughout this paper.

4.9 4.9

9.1

7.7

0.18 0.18

1.4 1.4

7.7

6.7

5.4 5.4

12

8.2

0.15 0.15

5.2 5.2

9.5

7.3

5.1 5.1

10

7.9

0.17 0.17

2.2 2.2

8.5

6.9

long vowels short vowels all vowels

F
1

F
2

F
0

duration
F

1F
2

Sy
rd

al
G

op
al

(B
ar

k)
Sy

rd
al

G
op

al
2

(B
ar

k)

Sy
rd

al
G

op
al

(B
ar

k)
Sy

rd
al

G
op

al
2

(B
ar

k)

Sy
rd

al
G

op
al

(B
ar

k)
Sy

rd
al

G
op

al
2

(B
ar

k)

4.75
5.00
5.25
5.50
5.75

8
9

10
11
12
13

0.15

0.16

0.17

0.18

2

3

4

5

7

8

9

10

S
ep

ar
ab

ili
ty

 in
de

x 
(F

−v
al

ue
)

Figure S4: Separability indices of the two versions of the Syrdal & Gopal (1986) account for long
vowels, short vowels, and long and short vowels together, shown for four of the five cues considered
in this study and the combined F1-F2. Labels indicate mean across the five test folds. Intervals
show average bootstrapped 95% confidence intervals across the test folds. Note that the ranges of
the y-axes varies across plots.

4 VISUALIZING THE DISTRIBUTION OF VOWEL PRODUCTIONS

Figures S5 and S6 show the Central Swedish vowels, after applying the 15 different normalization
accounts. For this purpose, we focus on F1 and F2 only. In Section Correlation matrices for all
normalization accounts, we plot pairwise correlation plots of all cues for all different normalization
accounts we compare.

Visual inspection suggests a few initial observations. The most striking difference is perhaps
between intrinsic normalization accounts (Syrdal and Gopal, 1986; Miller, 1989) and all other
approaches, though it is not immediately visually obvious which type of approach achieves better
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separability. Second, transforming the vowels to a different perceptual scale does not seem to
affect the vowel distributions much, besides a minor decrease in category variance for some of the
vowels. Some transformations bring the vowel categories closer together, towards the center of the
vowel space, e.g., ERB and semitones. Third, centering formants by subtracting each talkers’ mean
(McMurray and Jongman, 2011; Nearey, 1978) reduces some of the category variance, and as a
result, increases the category separability. Transforming the vowel data into different scales prior
to centering also seems to further improve separability (compare e.g., C-CuRE (Hz) and C-CuRE
(semitones)). Overall, the top two performing accounts across the long and short vowels appear
to be Lobanov (1971) and Nearey (1978). However, even for the best performing normalization
accounts, there is still considerable category overlap. This involves some of the high long vowels,
and some of the mid-center short vowels. This highlights the need to more systematically quantify
the effects of normalization, as we do in this study.
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Figure S5: The 11 long vowels of Central Swedish when F1 and F2 are transformed into a perceptual scale (grey), intrinsically
normalized (yellow), or extrinsically normalized through centering (blue) or standardizing (purple). Each point corresponds to one
recording, averaged across the five measurement points within each vowel segment. Each panel combines the data from all five test
folds.
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Figure S6: The 10 short vowels of Central Swedish when F1 and F2 are transformed into a perceptual scale (grey), intrinsically
normalized (yellow), or extrinsically normalized through centering (blue) or standardizing (purple). Each point corresponds to one
recording, averaged across the five measurement points within each vowel segment. Each panel combines the data from all five test
folds.
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5 CUE CORRELATION MATRICES FOR ALL NORMALIZATION ACCOUNTS

Figures S7 - S21 show the cue correlation matrices for the SwehVd vowel data for all 15 normalization
accounts.

Figure S7: The SwehVd vowel data in Mel space. Points show repetitions of each of the 21 Central
Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration cue space.
Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses show
bivariate Gaussian 95% confidence interval of category means.
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Figure S8: The SwehVd vowel data in Bark space. Points show repetitions of each of the 21 Central
Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration cue space.
Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses show
bivariate Gaussian 95% confidence interval of category means.
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Figure S9: The SwehVd vowel data in ERB space. Points show repetitions of each of the 21 Central
Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration cue space.
Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses show
bivariate Gaussian 95% confidence interval of category means.
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Figure S10: The SwehVd vowel data in semitones space. Points show repetitions of each of the 21
Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.

12



Figure S11: The SwehVd vowel data in SyrdalGopal (Bark) space. Points show repetitions of each
of the 21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel
duration cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced.
Ellipses show bivariate Gaussian 95% confidence interval of category means.
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Figure S12: The SwehVd vowel data in Miller (log) space. Points show repetitions of each of the 21
Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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Figure S13: The SwehVd vowel data in C-CuRE Hz space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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Figure S14: The SwehVd vowel data in C-CuRE Mel space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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Figure S15: The SwehVd vowel data in C-CuRE Bark space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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Figure S16: The SwehVd vowel data in C-CuRE ERB space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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Figure S17: The SwehVd vowel data in C-CuRE semitones space. Points show repetitions of each
of the 21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel
duration cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced.
Ellipses show bivariate Gaussian 95% confidence interval of category means.
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Figure S18: The SwehVd vowel data in Nearey1 (log) space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.

20



Figure S19: The SwehVd vowel data in Nearey2 (log) space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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Figure S20: The SwehVd vowel data in Gerstman (Hz) space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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Figure S21: The SwehVd vowel data in Lobanov (Hz) space. Points show repetitions of each of the
21 Central Swedish vowels by 16 female native talkers in the database in F0-F3 and vowel duration
cue space. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Ellipses
show bivariate Gaussian 95% confidence interval of category means.
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6 VOWEL-SPECIFIC IDEAL OBSERVER ANALYSES

The use of a perceptual model (here: ideal observers) also makes it straightforward to assess vowel-
specific effects of normalization. The next two subsections provide both the predicted categorization
accuracy per vowel in the different evaluations, as well as confusion matrices of the best and
the worst performing ideal observers, shedding light on how normalization improves recognition
accuracy.

6.1 Per-vowel categorization accuracy of models trained on long and short vowels separately

Figures S22 - S26 show the vowel-specific accuracies of the different normalization accounts.
Unsurprisingly, some vowels are recognized with higher accuracy than others—at least when
uniform category priors are assumed, as we did here. This is a direct consequence of the position
of the vowel in the acoustic-phonetic space, relative to neighboring vowels: the more neighboring
vowels overlap with each other, the lower the accuracy with which they are recognized. Which
vowels will benefit from normalization will thus naturally vary between languages, reflecting the
language-specific properties of the vowel space. For instance, [iː] is often described as more easily
recognized in previous work on other languages. This contrasts with our findings for Central Swedish:
here, [iː] is part of the dense clustering of vowels along the height dimension and so has many close
competitors. This highlights that recognition accuracy is due to the position of a vowel relative to
its competitors (e.g., Peterson and Barney, 1952; Kuhl, 1991; Polka and Bohn, 2003), rather than
its absolute location in the vowel space (e.g., [iː] being a peripheral vowel).

Also of interest is that not all vowels exhibit the benefit of normalization. In general, across
evaluations, it seems to be vowels that are already recognized with high accuracy that does not
benefit from normalization, which replicate previous studies that have included per-vowel accuracies
(e.g., Adank, 2003; Syrdal and Gopal, 1986). For one vowel in particular, normalization can actually
be detrimental to recognition. The accuracy of some normalized models is reduced compared to
unnormalized models for [ʉː] when more cues than F1 and F2 are considered. Finally, while there
are minor differences across vowels in the relative goodness of different normalizations, the models
that perform overall best also perform best on each vowel (in line with Adank, 2003). This further
demonstrates the plausibility of these normalization accounts for perception.
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Figure S22: Per-vowel predicted categorization accuracy of the ideal observers trained on the long vowels, under different assumptions
about the relevant cues. Point ranges indicate the average mean accuracy and average 95% bootstrapped CI across the five folds.
Chance level is indicated by grey line.
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Figure S23: (Continued from last page)Per-vowel predicted categorization accuracy of the ideal observers trained on the long vowels,
under different assumptions about the relevant cues. Point ranges indicate the average mean accuracy and average 95% bootstrapped
CI across the five folds. Chance level is indicated by grey line.
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Figure S24: Per-vowel predicted categorization accuracy of the ideal observers trained on the short
vowels, under different assumptions about the relevant cues. Point ranges indicate the average mean
accuracy and average 95% bootstrapped CI across the five folds. Chance level is indicated by grey
line.
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Figure S25: Per-vowel predicted categorization accuracy of the ideal observers trained on all
vowels, under different assumptions about the relevant cues. Point ranges indicate the average
mean accuracy and average 95% bootstrapped CI across the five folds. Chance level is indicated by
grey line.
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Figure S26: (Continued from last page)Per-vowel predicted categorization accuracy of the ideal
observers trained on all vowels, under different assumptions about the relevant cues. Point ranges
indicate the average mean accuracy and average 95% bootstrapped CI across the five folds. Chance
level is indicated by grey line.

6.2 Vowel-to-vowel confusion matrices

To further explore effects of normalization on vowel categorization, we investigate how vowel-to-
vowel confusion is affected by different normalizations. Figures S27 - S29 show confusion matrices
of the worst and best performing models trained on the long, short or all Central Swedish vowels,
under the different assumptions about the relevant cues. Next to the confusion matrices, we plot
difference matrices to facilitate comparison.

Frontiers 29



Supplem
entary

M
aterialfor

“E
valuating

norm
alization

accounts
against

the
dense

vow
elspace

ofC
entralSw

edish”

30



Figure S27: Illustration of the category-specific differences in predictions of the worst and best performing normalization models
for each combination of cues (rows). The confusion matrices (Panel A) plot the predictions for the worst (left) and best (right)
performing models in predicting the long vowels, under different assumptions about the relevant cues. Vowel intended by talker
(x-axis) is plotted against vowel selected by ideal observer model (y-axis). Color fill indicates the posterior probability of the models
predicting the intended vowel. The difference matrices (Panel B) illustrates the differences in predictions between the best and the
worst performing models. Color fill indicates the difference in the posterior probability of the models predicting the intended vowel.
More purple indicates an increase in posterior probability for the former over the latter model, more red indicates an advantage for
the latter over the former.
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Figure S28: Illustration of the category-specific differences in predictions of the worst and best performing normalization models
for each combination of cues (rows). The confusion matrices (Panel A) plot the predictions for the worst (left) and best (right)
performing models in predicting the short vowels, under different assumptions about the relevant cues. Vowel intended by talker
(x-axis) is plotted against vowel selected by ideal observer model (y-axis). Color fill indicates the posterior probability of the models
predicting the intended vowel. The difference matrices (Panel B) illustrates the differences in predictions between the best and the
worst performing models. Color fill indicates the difference in the posterior probability of the models predicting the intended vowel.
More purple indicates an increase in posterior probability for the former over the latter model, more red indicates an advantage for
the latter over the former.
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Figure S29: Illustration of the category-specific differences in predictions of the worst and best performing normalization models
for each combination of cues (rows). The confusion matrices (Panel A) plot the predictions for the worst (left) and best (right)
performing models in predicting the all vowels, under different assumptions about the relevant cues. Vowel intended by talker (x-
axis) is plotted against vowel selected by ideal observer model (y-axis). Color fill indicates the posterior probability of the models
predicting the intended vowel. The difference matrices (Panel B) illustrates the differences in predictions between the best and the
worst performing models. Color fill indicates the difference in the posterior probability of the models predicting the intended vowel.
More purple indicates an increase in posterior probability for the former over the latter model, more red indicates an advantage for
the latter over the former.
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7 AUXLIARY STUDY: COMPARING THE EFFECTS OF NORMALIZATION
ACCOUNTS ON BETWEEN- VS. WITHIN-CATEGORY VARIABILITY

A large portion of previous studies evaluating normalization accounts against production data, has
compared approaches in terms of how they affect category variability. In this additional study,
we follow this traditional approach and evaluate how effectively different normalization accounts
reduce the within-category variability of Central Swedish vowels. We calculate a separability index
under different assumptions about the relevant cues and the size of the vowel space (the long and
short vowels separately, or the entire space) and assess the effects on vowel category variability. To
anticipate one take-home point, the results highlight important shortcomings of separability indices
in evaluating normalization accounts and underlines the benefits of using a perceptual model to
compare the effects of different normalization accounts.

Before we evaluate how category separability is affected by normalization in F1-F2, F1-F3, and
F0-F3 and duration space, we look at how the normalization accounts affect the separability of
vowels along each cue separately (Figure S30). As we show below, this is helpful in understanding
the subsequently presented results for combinations of cues.
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Table S2. Previous studies comparing the effectiveness of normalization accounts in reducing within-category cue variability

Language
investigated

Article Speech materials Normalization accounts Approach Best two performing

Barreda &
Nearey, 2018

120,000 simulated languages (of 5 or 9
vowels) modeled on Hillenbrand et al.’s
(1995) data (98 female/male child/adult
talkers * 12 vowels)

Nearey2, Lobanov, log-mean in linear regression
framework

distance between
means (Eucledian
distance)

log-mean in linear
regression
framework (1),
Nearey2 (2)

Clopper, 2009 2 female/male talkers from Ohio (1 token *
10 vowels)

Bladon et al.’s scale factor of 1 Bark (1994),
Syrdal & Gopal, Nordström & Lindblom,
Nearey1, Nearey2, Watt & Fabricius, Gerstman,
Lobanov, Miller

variance reduction
(visual inspection)

Nearey, Watt &
Fabricius,
Gerstman, Lobanov
(no order)

Hindle, 1978 Peterson & Barney’s (1952) database; 19
female/male talkers from Philadelphia + 60
telephone informants (minimum 3 tokens
per category; analysis focus on /ay/)

Nearey2, Nordström-Lindblom,
Sankoff-Shorrock-McKay

distance between
means, variance
reduction
(regression)

Sankoff (1)

Kohn &
Farrington,
2012

Longitudinal data from 10 female/male
African American talkers from North
Carolina (approx. 10 tokens * 10 vowels * 5
ages)

Lobanov, Gerstman, Nearey1, Nordström &
Lindblom, Syrdal & Gopal/Thomas, Watt &
Fabricius

variance reduction
(regression)

Lobanov (1),
Gerstman, Watt &
Fabricius (2)

US English

Labov, 2010 Peterson & Barney’s (1952) database;
Philadelphia/Linguistic Change and
Variation project (120 female/male talkers,
stratified for age, sociolinguistic factors)

Nearey2, Nordström-Lindblom,
Sankoff-Shorrock-McKay

distance between
means (F-statistics)

Sankoff (1),
Nearey2 (2)

US English,
Norwegian,
Swedish,
German,
Danish, Dutch

Disner, 1980 Differing number of tokens, vowels, and
phonetic contexts across the six languages

Gerstman, Lobanov, Nearey2, Harshman’s
PARAFAC model

variance reduction
(visual inspection)

Nearey2 (1),
Lobanov (2)

Fabricius, Watt
& Johnson,
2009

20 old/young female/male talkers of
Received pronunciation (11 vowels); 6
old/young female/male talkers of Aberdeen
English (8 vowels in different phonetic
contexts)

Watt & Fabricius, Lobanov, Nearey1 Lobanov (1), Watt
& Fabricius (2)

UK English Flynn &
Foulkes, 2011

20 old/young female/male Nottingham
talkers (mean 180 recordings per talker;
categories not reported)

log-transformation (base 10), log-transformation
(natural), Mel, ERB, Bark (*2 gender-specific
versions), Syrdal & Gopal, Nordström (*2
gender-specific versions), LCE, Gerstman,
Lobanov, Watt & Fabricius (* 4 versions),
lettER, Nearey (*4 versions)

variance reduction
(SCV in
talker-means)

Gerstman (1), LCE
(2)

Russian Lobanov, 1971 5 female/male talkers (9 vowels in different
phonetic contexts)

linear compression or expansion (Fant, 1960),
Gerstman, Lobanov

distance between
means

Lobanov (1),
Gerstman (2)

Frontiers
35



Supplementary Material for “Evaluating normalization accounts against the dense vowel space of Central Swedish”

7.1 Methods

7.1.1 Speech materials

This study employs the same speech materials as in the main study. Paralleling the main study, we
evaluated category separability for each combination of normalization account, cues, and training-
test fold. Specifically, we use the exact same cross-validation folds as in the main study.

7.1.2 Separability index

Previous studies have used different measures to assess the relative success of a normalization
procedure in reducing inter-talker variability (see Table S2 and Nearey, 1989 for an overview
on classification accounts). This includes assessing the reduction in variance or distance between
means by visual inspection (e.g., Clopper, 2009; Disner, 1980; Hindle, 1978), or by calculating the
reduction in within-category variance across talkers (e.g., Disner, 1980; Fabricius et al., 2009; Flynn
and Foulkes, 2011; Hindle, 1978), or comparing the degree of separation between category means
for unnormalized and normalized data, i.e., an F-ratio (e.g., Labov, 2010). We will assess how
distinguishable vowels become under different normalization accounts by calculating a separability
index, as described in Equation (S1). Following some previous studies (e.g., Labov, 2010), this
separability index is essentially an F statistics, where the F statistics is the ratio of the within- and
between-category variances:

separability index =
between category MS

within category MS

=

∑
c=1,...,K

(Nc − 1)

K − 1

∑
c=1,...,K

(x̄c − x̄)2∑
c=1,...,K

∑
i=1,...,Nc

(xi,c − x̄c)2

(S1)

where K is the number of categories, Nc is the number of observations for category c, xi,c is the
cue vector (for all cues considered in the calculation of the separability index) for observation i
of category c, x̄c is the cue mean vector for category c, and x̄ is the overall cue mean vector. We
calculated this separability index separately for each combination of normalization account, cues,
and training-test fold, as described next.

7.2 Results

For F1 (first row of Figure S30), we see a clear advantage for centering (in blue) and standardizing
(in purple) compared to transformations (in grey) and intrinsic accounts (in yellow). In particular
Lobanov normalization seems to maximize category separability along F1, at least for the long
vowels and all vowels together. Notably, the accounts pattern differently along F2 (second row
of Figure S30). Overall, differences between accounts are much smaller along F2, and the clear
advantage of centering and standardizing accounts along F1 does not extend to F2.

An altogether different picture is observed for F3. Compared to F1 and F2, the intrinsic account
(Miller) performs substantially better in separating categories along F3, while all other accounts
perform poorly. This result is surprising: one of the downsides of intrinsic approaches that has been
noted in previous work is their sensitivity to measurement error (Thomas and Kendall, 2007). This
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Figure S30: Separability indices by normalization accounts for long vowels, short vowels, and
all vowels together (columns), shown for each of the five cues considered in this study (rows).
Labels indicate mean across the five test folds. Intervals show average bootstrapped 95% confidence
intervals across the test folds. Note that the ranges of the y-axes varies across plots.

sensitivity is caused by the fact that intrinsic accounts use a single measurement for normalization,
rather than the less noisy estimates resulting from aggregating across segments that are used in
extrinsic accounts. Since the third formant is often described as more difficult to reliably estimate
than other formants (leading to more measurement error), F3 would be expected to be particularly
affected by this weakness of intrinsic accounts.

Yet, further visualization in Figure S31 confirms that F3 indeed separates categories particularly
well when intrinsic normalization is applied. Compared to other accounts, Miller (1989) seems to be
particularly successful in separating vowels that differ in lip rounding. For example, Miller (1989)
separates two clusters among the high and mid-high vowels, one consisting of the back vowels [oː]
and [uː], and the other one of the front [iː], and rounded [yː] and [ʉː]. One possible explanation
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Figure S31: Category densities along F3 illustrates the effectiveness of vowel-intrinsic normalization
for this cue. Here shown for Miller, compared to vowel-extrinsic accounts that center and/or
standardize cues. For reference, densities in the absence of normalization are also shown.

for this result is that intrinsic normalization is indeed particularly effective for F3, and that our
correction of measurement errors—equally applied to all formants—effectively reduced the issue
with F3 measurement errors (presumably the human brain, too, can do better than an uncorrected
Praat algorithm without error correction). As we show below, this result for F3 carries over to any
combination of cues that includes F3. It is, however, an artifact of using category separability to
assess the effectiveness of normalization, as we show in the main study. We elaborate on this issue
in the discussion further down.

Returning to Figure S30, normalization does not increase category separability for F0. This is
expected given that F0 is known to affect vowel separability primarily through its indirect influence
on the interpretation of other formants (e.g., Barreda and Nearey, 2012; Barreda, 2020). Finally,
for duration all of the C-CuRE accounts group together against the remaining accounts. This, too,
is expected since all other accounts are formant-specific and thus do not normalize duration. In
summary, the five cues contribute to category separability in different ways, and this is reflected
in varying effectiveness of different normalization accounts. We also note that the best performing
normalization account for any combination of cues and vowel qualities is typically never significantly
better than the next best performing model (the 95% confidence intervals of the best model overlap
with the mean of the next best model). In fact, for many combinations of cues and vowel qualities,
many of the models perform similarly.

Next, we summarize how normalization affects category separability when combinations of the
fives cues are considered. Figure S32 shows the separability index for the different normalization
accounts for three different combinations of cues. For the first row of Figure S32, we followed
most previous research in assessing category separability for the combination of F1 and F2 (e.g.,
Disner, 1980; Fabricius et al., 2009; Flynn and Foulkes, 2011; Hindle, 1978; Labov, 2010).
Accounts that center against the talker’s overall formant mean (in blue) are among the best
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performing normalization accounts. No matter the assumed perceptual scale, centering always
improves category separability. Standardizing accounts (in purple), primarily Lobanov (1971), also
perform well at separating categories, more so for the long vowels. However, scale transformations
(in grey), and intrinsic accounts (in yellow), do not improve category separability compared to
unnormalized Hz, at least not when assessed on the long vowels or the entire vowel space.

The remaining rows of Figure S32 compare normalization accounts when F3 (second row) or F0,
F3, and duration are included (third row). Overall, the category separability is now lower, a result
of how the accounts affect category separability along the cues added (see Figure S30). The most
drastic change in performance concerns the intrinsic Miller (1989) and the standardizing accounts.
When including F3, Miller (1989) performs as well or better, in absolute numbers, as when evaluated
on only the combination of F1 and F2, thereby increasing its performance relative to other accounts.
This increase in performance might be particularly pronounced for languages like Swedish, where F3
carries important information about lip rounding and thus vowel identity. In contrast, performance
of standardizing accounts drops substantially if F3 or any other cue besides F1 and F2 is included.S3

This mirrors what was found when assessing category separability separately for each cue (Figure
S30).

Finally, looking across all three rows, category separability is consistently higher for short than
long vowels. The same pattern is evident for each cue separately in Figure S30. This result
conceptually replicates an initially surprising result of the main study: while short vowels are more
densely clustered in the center of the vowel space, and thus occupy a smaller perceptual space, they
also exhibit less category variability and less category overlap, making them overall more separable.

7.3 Discussion

When only F1 and F2 are considered, as in most previous work on vowel normalization, we find
that extrinsic centering and standardizing accounts achieve the best category separability. Within
these two types of accounts, there is considerable variability. For example, among the intrinsic
accounts, Miller performs worse than Syrdal & Gopal, among the extrinsic accounts, versions of
C-CuRE seem to consistently perform best. It is also worth noting, however, that there is never a
single account that performs significantly better than all other normalizations. This points to the
inherent similarities across normalization accounts, and perhaps limitations of the approach taken
here (and in some previous work). This point is also raised in the general discussion in the main
paper. Regardless of these caveats, the findings for F1 and F2 in this additional study, revise the
results of Disner (1980) for Swedish, and instead replicates previous findings for the other Germanic
languages in Disner’s sample as well as the majority of previous studies on other languages (e.g.,
Fabricius et al., 2009; Flynn and Foulkes, 2011; Labov, 2010).

However, when F3 is considered along with F1 and F2, this result does no longer hold. Key
to understanding this result and what it says about the suitability of category separability as a
measure of normalization accounts is Figure S30: while extrinsic normalization performs better
than other approaches for F1 and F2, the absolute differences in performance are small compared
to the advantage of the intrinsic account observed for F3. Combined with a seemingly innocuous
aspect of the separability index in Equation (S1), this allows separability along F3 to dominate
separability along the other cue dimensions. Our separability index takes the sum of (squared)

S3 We confirmed this by conducting additional comparisons using only F1, F2 and F0, or only F1, F2 and duration. For both of these
comparisons too, we found that standardizing accounts perform poorly.
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Figure S32: Separability indices by normalization accounts for long vowels, short vowels, and both
long and short vowels together (columns) shown for three different combinations of cues (rows).
Labels indicate mean across the five test folds. Intervals show average bootstrapped 95% confidence
intervals across the test folds. Note that the ranges of the y-axes varies across plots.

distances along each cue dimension, essentially assuming that the effect of all cues is simply a sum
of each cue’s effect considered separately. This means that the separability index cannot capture
the joint effect of cues—whether, for example, one cue effectively separates one set of categories
and another cue separates another set of categories, rather than both cues separating the same
categories. The separability index thus cannot recognize, for example, that F1 and F2 capture
largely complementary aspects of the vowel inventory (as evident in, for example, Figures S5 and
S6).

This is not the only deficiency of the separability index or similar measures of category variability.
The use of squared distances means that even a small number of observations located far away from
the category mean can disproportionally affect the index. Consider, for example, the F3 densities
in Figure S31. For non-intrinsic normalizations, some categories have low but non-zero densities far
away from the mode. Because of the use of squared distances, this results in low category separability
for these normalization accounts despite the fact that observations with such cue values are rare
and thus not expected to have a large effect on the average perceptual separability of vowels. For
the same reason (the use of squared distances), category separability can be high even if a cue
separates only a small subset of categories (as is the case for F3), compared to cues that more
gradiently separates all categories (F1 and F2; see Figures S7 to S21).
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In sum, indices of variability and category separability like that in Equation (S1) fail to adequately
assess the expected consequences of normalization for perception, which is the primary interest of
this paper, and addressed by the methodology we employed in the main study.
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