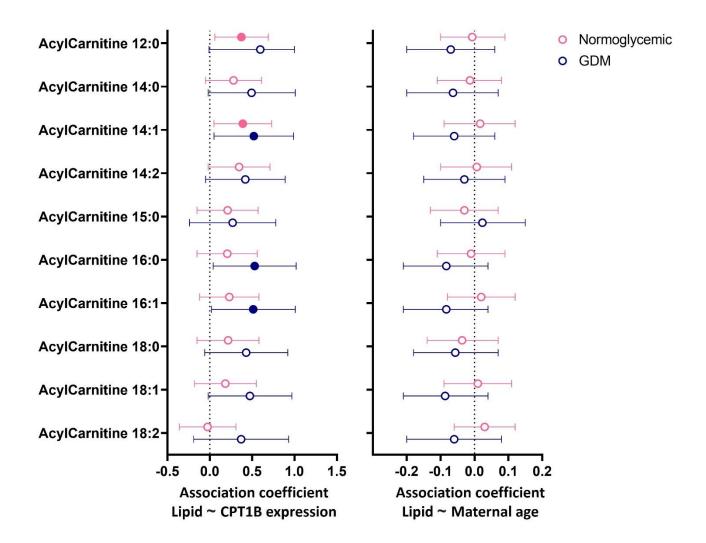
## **Supplementary information**


## **Supplementary methods**

Chromatography was performed using a 2.1 x 100 mm 1.8 µm Zorbax Eclipse Plus C18 RRHD (Agilent Technologies) column at 60°C, and the following gradients and settings: Mobile phase A: 50% water, 30% acetonitrile, 20% isopropanol, 10 mmol/L ammonium formate and Mobile phase B: 90% isopropanol, 9% acetonitrile, 1% water, 10 mmol/L ammonium formate; Start (0.4 ml/min): 90% A, 0-2.7minutes: decrease to 55% A, 2.7-2.8 minutes: decrease to 47% A, 2.8-9 minutes: decrease to 35% A, 9-9.1 minutes: decrease to 11% A, 9.1-11 minutes: decrease to 8% A, 11-11.1 minutes: decrease to 0% A, 11.1-11.9 minutes: 0% A, 11.9-12 minutes: Increase to 90% A, 12-15 minutes: 90% A. The Agilent 6490 triple quadrupole was run with the following settings - Gas temperature: 150 °C; gas flow: 17 L/min; nebulizer: 20 psi; sheath gas temperature: 200°C; sheath gas flow: 10 L/min; positive capillary voltage: 3500 V; negative capillary voltage: 3000 V; positive nozzle voltage: 1000 V; negative nozzle voltage: 1500 V; positive low pressure RF (iFunnel): 100 V; negative low pressure RF (iFunnel): 60 V; fragmentor: 380; polarity: positive. Acylcarnitines were measured using the transitions shown in Supplementary table 1.

## Supplementary Table 1. Transitions used for the measurement of placental acylcarnitines.

| Name                                      | Retention time (min) | Collision Energy | Precursor Ion (m/z) | Product Ion (m/z) |
|-------------------------------------------|----------------------|------------------|---------------------|-------------------|
| AcylCarnitine 12:0                        | 1.3                  | 30               | 344.3               | 85.1              |
| AcylCarnitine 13:0                        | 1.7                  | 30               | 358.3               | 85.1              |
| AcylCarnitine 14:0                        | 2.0                  | 30               | 372.3               | 85.1              |
| AcylCarnitine 14:1                        | 1.5                  | 30               | 370.3               | 85.1              |
| AcylCarnitine 14:2                        | 1.2                  | 30               | 368.3               | 85.1              |
| AcylCarnitine 15:0                        | 2.3                  | 30               | 386.3               | 85.1              |
| AcylCarnitine 16:0                        | 2.5                  | 30               | 400.4               | 85.1              |
| AcylCarnitine 16:0 d3 (Internal standard) | 2.5                  | 30               | 403.3               | 85.1              |
| AcylCarnitine 16:1                        | 2.2                  | 30               | 398.3               | 85.1              |
| AcylCarnitine 17:0                        | 2.9                  | 30               | 414.4               | 85.1              |
| AcylCarnitine 18:0                        | 3.6                  | 30               | 428.4               | 85.1              |
| AcylCarnitine 18:1                        | 2.7                  | 30               | 426.4               | 85.1              |
| AcylCarnitine 18:2                        | 2.2                  | 30               | 424.3               | 85.1              |
| AcylCarnitine 20:4                        | 2.3                  | 30               | 448.4               | 85.1              |
| AcylCarnitine 22:6                        | 3.6                  | 30               | 472.4               | 85.1              |

Supplementary Figure 1. Associations between abundance of placental acylcarnitines with placental *CPT1B* mRNA expression or maternal age by linear regression stratified by maternal GDM status. The forest plots show coefficient estimates and 95% confidence intervals of associations between placental acylcarnitines (outcome) with placental *CPT1B* mRNA expression (A) or maternal age (years, B) in subjects with normoglycemia (n=26) and GDM (n=24). Filled symbols show acylcarnitines that are significantly associated after adjustment by Benjamini-Hochberg's correction. Data for placental acylcarnitine abundance and mRNA expression data of *CPT1B* were log2-transformed then converted to Z-scores prior to linear regression.

