

Supplementary Material

- **1 SUPPLEMENTARY DATA**
- 1.1 Figures

Figure S1: Three theoretical examples elucidate the relationship between the number of erroneously (red) and correctly (green) classified EEG segments and the relative duration of false positives (PERR). MT stands for the number of different trains of misclassified EEG segments. The top bar in each subplot shows the result of classification for 10-s EEG. As in the actual calculations, we used 1 s windows with 0.5 s overlap in this diagram.

15

128.42

137.50

Δ	-											
~	f _{a [Hz]}	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5		
	10	0.69	0.73	0.75	0.77	0.79	0.80	0.81	0.82	0.83		
	11	0.68	0.72	0.75	0.78	0.79	0.81	0.82	0.83	0.83	1.0	
	12	0.65	0.69	0.72	0.75	0.77	0.79	0.80	0.81	0.82	0.9	
	13	0.60	0.65	0.69	0.72	0.74	0.76	0.78	0.79	0.80	0.8	
	14	0.56	0.61	0.65	0.69	0.72	0.74	0.76	0.78	0.79	0.7	<u> </u>
	15	0.52	0.57	0.62	0.66	0.69	0.71	0.74	0.75	0.77	0.6	<u>음</u> .
											0.5	za
											0.4	j,
В	f _{a [Hz]}	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5	0.3	chro
	10	0.31	0.32	0.33	0.34	0.36	0.37	0.38	0.39	0.40	0.2	É.
	11	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.1	Ś.
	12	0.26	0.27	0.28	0.28	0.29	0.31	0.32	0.33	0.34	0.0	
	13	0.24	0.25	0.26	0.27	0.28	0.30	0.31	0.32	0.33	-	
	14	0.23	0.24	0.25	0.27	0.28	0.29	0.30	0.31	0.33		
	15	0.23	0.24	0.25	0.26	0.27	0.29	0.30	0.31	0.32		
С	f _{a [Hz]}	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5	170	[%
	10	122.58	128.13	127.27	126.47	119.44	116.22	113.16	110.26	107.50	160	
	11	142.86	148.28	150.00	151.61	146.88	145.45	141.18	137.14	130.56	150	8
	12	150.00	155.56	157.14	167.86	165.52	154.84	150.00	145.45	141.18	140	eu
	13	150.00	160.00	165.38	166.67	164.29	153.33	151.61	146.88	142.42	130	e
	14	143.48	154.17	160.00	155.56	157.14	155.17	153.33	151.61	139.39	120	調
	15	100 40	107.50	140.00	150.05	15550	14400	140.07	14104	140.00		U

Figure S2: We performed the grid search to determine the values of the wavelet parameters f_c and f_a appropriate for seizure detection. The average value of the synchronization index for the interictal and ictal segments is shown in (A) and (B), respectively. (C) shows the relative percentage difference (with respect to the interictal EEG).

155.56 144.83

146.67

141.94

140.63

110

148.00 153.85

Figure S3: Histograms of: (A) f_a and (B) f_c . The parameters of the complex Morlet wavelets were determined for each patient in the same way as in the calculations from Fig. S2.

Figure S4: Example of the building of a k-NN seizure detector with the Leave-One-Out Cross Validation (LOOCV) for patient P18. We used the global synchronization index and the mean normalized EEG amplitude as the features. The learning set consisted of randomly chosen interictal segments and segments fully embedded in absences with average synchronization greater than the cutoff value. We used 3:1 ratio of interictal to ictal windows. (A) and (C) show the spread of the data generated for all 19 channels of 10-20 EEG setup (S_{19}) and the subset S_4 (channels Fp1, Fp2, T5, and T6), respectively. The confusion matrices in (B) and (D) show the results of a 10-fold cross-validation. The classifiers were applied to the segmented EEG of patient P18 (1 s windows with 0.5 s overlap). (E) and (F) show the confusion matrices of P18 for S_{19} and S_4 , respectively.

1.2 Tables

Class Type	ACC [%]	TCV [-]	PS [obs/s]	TT [s]
Neural Network	98.34	164	188 000	99.2
Nearest Neighbor	98.25	179	94 600	2.60
Decissions Trees	98.23	181	106 000	3.28
SVM	97.68	231	90 500	9.26
Naive Bayes	97.65	290	240 000	1.37
Ensemble	96.66	333	25 400	9.76
Discriminant Analysis	96.30	371	225 000	1.33
Logistic Regression	96.10	384	200 000	2.77

Table S1. Comparison of the performance of machine learning classifiers used for absence seizure detection. ACC - accuracy; TCV - total cost of validations (number of misclassified windows); PS - prediction speed; TT - training time. For each family of classifiers, we averaged performance metrics generated by the Classification Learner package across different variants.

Table S2. Seizure detection performance for each patient. Column labels are as follows: NABS (numbers of absences), ADABS (average duration of absence seizure), DET (number of detected seizures), OVR (overlap of the detected seizures with the actual ones), PERR (the relative duration of false positives), FP (number of false positives), MT (number of distinct trains of misclassified windows)

ID	NABS [-]	ADABS [s]	DET [-]	OVR [%]	PERR [%]	FP [-]	MT [-]
1	6	10.50	6	99.15	0.22	0	0
2	5	13.20	5	96.84	0.22	0	0
3	10	10.33	10	71.82	1.25	20	15
4	8	15.75	8	92.87	0.33	5	4
5	11	11.00	11	92.95	0.78	10	7
6	6	11.33	6	99.20	0.28	5	4
7	2	13.50	2	99.98	0.03	0	0
8	3	15.67	3	98.84	0.54	5	4
9	7	15.00	7	97.40	0.15	2	1
10	5	5.33	4	77.31	0.79	20	9
11	5	8.75	5	78.38	6.89	228	101
12	10	12.22	10	96.72	1 57	43	25
13	3	14 33	3	99 99	0.31	8	3
14	2	7 67	2	96.62	0.35	2	2
15	0	14 11	0	98.36	2 70	67	30
15	1	12.25	1	98.50	0.15	2	2
17	•	14.75	+ 0	56.54	3.42	161	85
10	0	14.75	0	08.15	1.22	25	10
10	14	11.14	14	96.13	1.52	55	19
19	12	13.30	12	78.00	0.30	0	0
20	3	19.67	3	99.99	0.34	2	2
21	/	9.29	/	98.46	0.62	10	0
22	4	11.00	4	91.10	0.12	4	3
23	5	12.80	5	96.09	0.10	1	1
24	16	6.36	16	/8.98	2.93	105	64
25	4	8.80	4	54.52	0.04	1	1
26	12	7.00	12	62.07	0.79	17	12
27	11	17.20	11	87.20	1.98	56	35
28	1	13.50	1	80.02	0.10	1	1
29	3	18.86	3	95.75	0.61	13	5
30	5	23.20	5	97.00	0.54	5	4
31	3	10.47	3	40.41	0.00	0	0
32	I	8.50	I	78.64	0.41	0	0
33	I	8.70	1	87.56	0.60	4	4
34	1	5.00	1	72.23	0.35	2	2
35	4	8.22	4	63.19	1.28	11	10
36	6	6.58	6	11.46	0.36	4	2
37	3	14.67	3	54.59	0.53	7	3
38	2	9.00	2	70.67	0.33	2	1
39	6	14.19	6	57.59	0.68	41	15
40	2	8.50	2	23.59	0.56	11	6
41	2	10.00	2	92.48	0.12	3	2
42	0	17.10	0	99.99	1.82	4/	20
43	/	13.80	/	82.18	1.29	18	9
44	18	3.75	18	89.76	1.37	24	11
45	3 10	13.00	3 10	95.00	0.08	1	1
40	10	10.50	10	89.04	0.48	11	8
4/	0	11.30	0	09.02	0.21	4	4
40	0	13.18	0	90.74	0.80	52	21
49 50	0 5	0.80	0 5	95.55	0.47	9	64
50	16	9.80	16	70.57 95.09	2.41	22	10
51	10	0.02 8.50	10	03.00	0.12	22	10
52	+	35.50	4	02.30	0.02	0	0
55	4	12 50	4	00 00	0.03	6	2
55	4	11.25	4	02.80	0.20	0	0
55	+	7.00	-+	92.00 11.57	0.02	0	0
50 57	5 5	7.00	1 5	00.17	0.00	1	1
5/ 50	5 5	21.00 12.60	5 5	77.17 50 10	0.11	1	1
50 50	5	0.20	5	00.20	0.11	50	0
39 60	2	9.29	2	99.29 00.04	2.24	24	27
61	2	12.30	2	99.94 07.40	1.38	54	20
01 62	27	4.33	27	97.48	0.00	0	2
04 62	2	10.80	2	99.07 07 24	0.57	2	ے 1
03 64	2 0	7 00	2 0	77.54 77 56	5 11	ے 150	1 116
65	7	6.80	7	88.01	0.12	150	0
03	0	0.00	0	00.91	0.12	0	0

•

						fc [I	Hz]					
		0.7			0.8			0.9			1.0	
f []]_]		PERR	FP		PERR	FP	OVR	PERR	FP	OVR	PERR	FP
[HZ]	<u> </u>	% 0]	[-]	[`	/0]	[-]	Ľ	%0]	[-]	L	%0]	[-]
10	98.34	0.28	1	99.17	0.30	1	99.17	0.30	1	99.17	0.33	1
11	98.34	0.28	1	99.16	0.28	1	99.17	0.28	1	99.17	0.31	1
12	98.33	0.22	1	99.16	0.22	1	99.16	0.25	1	99.15	0.22	0
13	98.33	0.22	1	99.16	0.22	1	99.16	0.22	1	99.99	0.22	0
14	97.50	0.22	1	99.16	0.22	1	99.98	0.22	1	99.99	0.22	0
15	95.83	0.20	0	98.32	0.20	0	98.32	0.22	1	99.15	0.22	1
		1.1			1.2			1.3			1.4	
10	99.17	0.31	1	99.99	0.31	1	99.99	0.33	1	99.99	0.33	1
11	99.17	0.33	1	99.17	0.33	1	99.17	0.39	1	99.17	0.39	1
12	99.16	0.22	1	99.15	0.22	1	99.98	0.28	2	99.98	0.28	2
13	99.98	0.22	1	99.99	0.22	1	99.99	0.25	1	99.98	0.25	1
14	99.99	0.22	1	99.98	0.22	1	99.99	0.25	2	99.99	0.25	1
15	99.15	0.22	1	99.99	0.25	2	99.15	0.22	1	99.15	0.22	1

Table S3. Seizure detection characteristics for different combinations of wavelet parameters f_a and f_c . The overlap (OVR) of the segments classified as ictal with the absence seizures, the relative duration of false positives (PERR), and the number of false positives (FP) were calculated for patient P1 (all 19 channels were used). The individual grid search for this patient yielded $f_c = 1.3$ Hz and $f_a = 15$ Hz.

Table S4. Seizure detection characteristics for different combinations of wavelet parameters f_a and f_c . The overlap (OVR) of the segments classified as ictal with the absence seizures, the relative duration of false positives (PERR), and the number of false positives (FP) were calculated for patient P18 (all 19 channels were used). The individual grid search for this patient yielded $f_c = 1.3$ Hz and $f_a = 15$ Hz.

						fc []	Hz]					
		0.7			0.8			0.9			1.0	
f	OVR	PERR	FP	OVR	PERR	FP	OVR	PERR	FP	OVR	PERR	FP
[Hz]	[%]	[-]	['	%]	[-]	['	%]	[-]	['	%]	[-]
10	98.99	0.91	17	98.98	1.02	24	98.98	1.00	23	99.31	1.24	31
11	98.65	0.91	20	99.31	1.00	21	99.32	1.13	27	99.31	1.24	30
12	97.99	0.78	19	98.98	0.97	23	98.98	1.02	25	98.15	1.32	35
13	95.66	0.65	16	96.99	0.85	22	97.99	1.10	29	98.65	1.10	28
14	93.00	0.61	17	95.99	0.72	19	96.66	0.87	22	97.32	1.08	28
15	91.01	0.61	17	94.99	0.67	18	96.00	0.76	21	96.99	0.87	24
		1.1			1.2			1.3			1.4	
10	99.65	1.34	35	99.65	1.49	40	99.65	1.50	40	99.65	1.71	46
11	99.65	1.32	32	99.65	1.34	35	99.65	1.69	46	99.65	1.78	48
12	98.99	1.43	37	99.32	1.58	44	99.32	1.71	48	99.32	1.69	48
13	98.65	1.26	34	98.65	1.30	36	98.65	1.43	39	98.32	1.48	42
14	97.99	0.97	24	98.32	1.10	28	98.32	1.23	31	97.99	1.24	33
15	98.32	1.02	26	98.65	1.08	28	98.66	1.24	33	98.99	1.28	34

alse	lded	
n of f	2 yiel	
uratio	Eig. S	
ive dı	ini be	
telat	esente	
ss, the	ch pr	
eizure	d sear	
nce s	le grid	
e abse	on. Tl	
ith th	eviati	
ctal w	lard d	
d as i	stanc	
assifie	ean ±	
nts cla	l as m	
egmei	sented	
the s	e pres	
/R) of	ues ar	
p (0)	he val	
overla	Ed). T	
The	sre use	
nd f_c .	els we	
f_a a	chann	
neters	s (19 c	
paran	atients	
avelet	r all p	
of w	ted for	
ations	lculat	
mbin	ere ci	
ent co	FP) w	
differ	ives (
ss for	posit	
eristic	f false	
naract	ber of	
ion cł	s num	Hz.
detect	ind the	= 12
izure	R), a	d f_a
5. Sei	s (PEI	Hz an
ble S:	sitive	= 1
Та	bo	f_{c}

						fc []	[z]					
		0.7			0.8			0.0			1.0	
f	OVR	PERR	FΡ	OVR	PERR	FP	OVR	PERR	FP	OVR	PERR	FР
[Hz]	26	[Ξ	6%	[Ξ	[%	[Ξ	[%]	_	Ξ
10	76.09 ± 28.91	0.77 ± 1.14	1251	79.16 ± 27.31	0.87 ± 1.22	1410	81.61 ± 25.20	1.01 ± 1.46	1696	83.77 ± 22.78	1.11 ± 1.57	1859
11	76.28 ± 27.80	0.65 ± 0.99	1026	80.02 ± 24.94	0.75 ± 1.13	1214	82.19 ± 23.60	0.87 ± 1.27	1436	84.22 ± 21.73	1.02 ± 1.45	1683
12	74.30 ± 28.78	0.57 ± 0.90	900	78.17 ± 26.10	0.67 ± 0.97	1080	80.93 ± 23.30	0.76 ± 1.11	1254	82.90 ± 20.83	0.87 ± 1.23	1437
13	69.58 ± 29.65	0.51 ± 0.84	830	75.33 ± 26.87	0.60 ± 0.91	956	78.30 ± 24.70	0.68 ± 0.98	1090	80.39 ± 23.67	0.80 ± 1.14	1298
14	63.54 ± 31.39	0.44 ± 0.74	719	69.87 ± 29.30	0.53 ± 0.84	847	73.84 ± 27.25	0.61 ± 0.89	970	77.52 ± 25.48	0.68 ± 0.97	1107
15	55.87 ± 32.11	0.40 ± 0.69	659	62.90 ± 31.61	0.47 ± 0.75	748	68.62 ± 30.23	0.53 ± 0.81	842	72.94 ± 28.65	0.60 ± 0.88	964
		1.1			1.2			1.3			1.4	
10	85.08 ± 21,81	1.29 ± 1.88	2213	86.30 ± 20.86	1.43 ± 2.07	2469	86.76 ± 20.70	1.57 ± 2.23	2697	87.15 ± 20.49	1.76 ± 2.60	3073
11	85.43 ± 20.30	1.10 ± 1.59	1844	86.64 ± 19.30	1.23 ± 1.84	2098	87.57 ± 18.56	1.39 ± 2.09	2397	87.85 ± 18.48	1.52 ± 2.28	2632
12	84.23 ± 20.49	1.00 ± 1.40	1659	85.14 ± 19.70	1.11 ± 1.58	1874	85.98 ± 19.75	1.24 ± 1.76	2094	86.74 ± 19.64	1.37 ± 1.95	2342
13	82.04 ± 22.85	0.89 ± 1.23	1473	83.47 ± 22.13	0.97 ± 1.34	1615	84.01 ± 22.49	1.12 ± 1.56	1864	85.20 ± 20.78	1.22 ± 1.65	2027
14	79.54 ± 23.82	0.77 ± 1.05	1227	81.78 ± 22.14	0.86 ± 1.16	1400	83.42 ± 20.54	0.94 ± 1.26	1548	84.19 ± 20.54	1.04 ± 1.44	1736
15	76.39 ± 25.86	0.67 ± 0.94	1065	79.12 ± 23.04	0.75 ± 1.00	1213	80.34 ± 22.22	0.82 ± 1.08	1330	81.28 ± 21.52	0.91 ± 1.21	1495

				f_c [[Hz]			
	0.7		0.8		0.9		1	
f_a [Hz]	PERR [%]	FP [-]	PERR [%]	FP [-]	PERR [%]	FP [-]	PERR [%]	FP [-]
10	0.12 ± 0.26	44	0.15 ± 0.26	54	0.21 ± 0.36	74	0.24 ± 0.39	83
11	0.12 ± 0.25	40	0.16 ± 0.31	53	0.17 ± 0.31	57	0.22 ± 0.36	72
12	0.08 ± 0.14	26	0.10 ± 0.17	32	0.11 ± 0.21	39	0.12 ± 0.27	44
13	0.05 ± 0.12	18	0.06 ± 0.15	21	0.07 ± 0.16	25	0.09 ± 0.17	31
14	0.04 ± 0.11	13	0.05 ± 0.12	16	0.05 ± 0.13	19	0.07 ± 0.17	25
15	0.03 ± 0.09	11	0.05 ± 0.14	16	0.05 ± 0.13	18	0.07 ± 0.18	25
	1.1		1.2		1.3		1.4	
10	0.25 ± 0.42	93	0.34 ± 0.51	119	0.36 ± 0.54	128	0.44 ± 0.62	153
11	0.22 ± 0.40	77	0.23 ± 0.42	81	0.30 ± 0.44	104	0.34 ± 0.53	119
12	0.15 ± 0.28	53	0.14 ± 0.27	51	0.18 ± 0.34	68	0.20 ± 0.75	75
13	0.11 ± 0.21	42	0.14 ± 0.22	49	0.25 ± 0.15	55	0.20 ± 0.34	69
14	0.09 ± 0.23	32	0.11 ± 0.24	38	0.13 ± 0.25	45	0.15 ± 0.27	50
15	0.09 ± 0.23	33	0.12 ± 0.27	40	0.13 ± 0.28	44	0.17 ± 0.37	61

Table S6. False positives detection characteristics for different combinations of wavelet parameters f_a and f_c . The relative duration of false positives (PERR), and the number of false positives (FP) were calculated for all controls (19 channels were used). The values are presented as mean \pm standard deviation. The grid search presented in Fig. S2 yielded $f_c = 1$ Hz and $f_a = 12$ Hz.