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Title: Processing speed enhances model-based over model-free reinforcement learning
in the presence of high working memory functioning

1. Results for TMT speed and MWT

Figure S1 shows results on repetition probabilities for the TMT speed and the MWT,
which did not survive correction for multiple comparisons.
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Figure S1. Average proportion of choice repetition on the current trial
as a function of Reward (reward vs. no reward) and Transition (common
vs. rare) on the previous trial. A. Results for individuals with a low (left
panel) versus high (right panel) speed in the trail making test (TMTspeed ;
split at the median score of 33). B. Results for individuals with a low (left
panel) or high (right panel) German vocabulary test score (MWT ; split at
the median score of 104).

2. Results for overall reward

We found a linear increase for the percentage of rewarded trials with higher DSST scores
(see Figure S2).
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Figure S2. Percentage of rewarded trials per participant as a function of
DSST. The line displays predictions from a linear regression (grey area =
S.E.M).

3. Computational Model

We denote the state x visited in trial t as sx,t, with state index x denoting states at
first stage, x = 1, at second stage, x = {21, 22}, and final outcome, x = {31 .. 34}.
Actions ax,t = {1, 2} lead to probabilistic (a1,t) or deterministic (a2,t) transitions between
successive states. Final states s3,t are associated with probabilistic rewards rt, while rt = 0
for all non-final states.

To account for habitual learning we used the model-free reinforcement learning algorithm
SARSA(λ) temporal difference learning (Rummery & Niranjan, 1994), where action values
QHab(sx,t; ax,t) are updated based on the reward prediction error (RPE),

(1) δx,t = QHab(sx+1,t; ax+1,t) + rx,t - QHab(sx,t; ax,t)

via

(2) QHab(sx,t; ax,t) = QHab(sx,t; ax,t) + αxδx,t ,

with free learning parameters αx. Based on analyses by Daw, Gershman, Seymour, Dayan,
and Dolan (2011) we used separate learning rates α1 and α2 for 1st- and 2nd- stages. We
allowed reward-feedback to travel across stages in the model-free system such that RPEs at
the final state are used to additionally update 1st-stage action values via the free eligibility
parameter λ (Sutton & Barto, 1998):

(3) QHab(s1,t; a1,t) = QHab(s1,t; a1,t) + α1λδ2,t .

The habitual system thus does not explicitly represent the structure of the state environ-
ment, but instead updates reward predictions in a model-free manner.
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The goal-directed system, to the contrary, constructs a model of the states, actions and
transitions between states to re-compute 1st-stage action values QGD(s1,t; a1,t) at each trial
by weighting each actions’ expected outcomes by the probability of their occurrence:

(4)
QGD(s1,t; a1,t) = P (s21,t | s1,t; a1,t) max

a
Q(s21,t; a21,t) + P (s22,t | s1,t; a1,t) max

a
Q(s22,t; a21,t).

Before the experiment, participants were instructed that transition probabilities given
1st-stage action a1,t = 1 would be 0.3 and 0.7 for the transitions to 2nd stage states s21,t
and s22,t (and vice versa for a1,t = 2). We therefore modelled the acquisition of transition
probabilities by assuming participants learned to map action-state pairs {a1, s2x} to tran-
sition probabilities, p = {0.3, 0.7}, by counting whether they had more often encountered
transitions {a1 = 1, s21} and {a1 = 2, s22} or transitions {a1 = 1, s22} and {a1 = 2, s21} and
concluding the more frequent category corresponds to p = 0.7. We assume that model-free
and model-based action values are integrated at 1st-stage via

(5) QInt(s1,t; a1,t) = (1− ω)QHab(s1,t; a1,t) + ωQGD(s1,t; a1,t) ,

where the free weighting parameter ω determines the relative contribution of model-free
and model-based action values, with a parameter value of ω = 0 reflecting pure model-free
control and ω = 1 reflecting pure model-based control. Action values at 2nd-stage do not
differ between systems and QInt(s2,t; a2,t) = QHab(s2,t; a2,t) = QGD(s2,t; a2,t).

Integrated action values are then used to determine action probability via the softmax
function

(6) P (ax,t = a | sx,t) =
exp(βx[QInt(sx,t; ax,t) + ρ repe(a)])∑
A exp(βx[QInt(sx,t;Ax,t) + ρ repe(a)])

.

The free parameters βx determine how deterministic choices are and capture noise and
exploration. For a parameter value of βx = 0 choice behaviour is fully random; for a
value of βx = inf choice is fully deterministic in the sense that higher-valued options
are always preferred, even if the value-difference between options is negligible; a value of
βx = 1 reflects probability/value matching. Indicator variable repe(a) codes whether the
current action a1,t has been chosen on the last trial [for a1,t = a1,t−1 → repe(a) = 1 and
for a1,t 6= a1,t−1 → repe(a) = 0]. The free parameter ρ thus captures perseveration or
stickiness of 1st-stage choices, and positive values of ρ reflect an enhanced probability of
repeating a 1st-stage action on the consecutive trial.

The model overall contains seven free parameters θ = (β1, β2, α1, α2, λ, ω, ρ), and corre-
sponds to the one introduced by Daw et al. (2011).

4. Mixed effects model fitting

We used Bayesian modeling to estimate the model parameters θi for individual partici-
pants i (cf. Huys et al., 2011). Combining the likelihood with information from a prior
regularizes and stabilizes estimates particularly when the estimates are not well constrained
by the data.
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We estimated the maximum a posteriori (MAP) parameters for each participant via

(7) θ̂MAP
i = argmax

θ
P (Ai | θi)P (θi | µθ, σθ) ,

where Ai are all the actions by subject i and the parameters µθ and σθ are the mean and
the variance of the prior Gaussian distribution. We assume the likelihood P (Ai | θi) =∏
t=1:nt P (Ai,t | θi), reflecting independence of individual actions given the model and the

parameters.
We moreover used empirical Bayes and set the prior parameters µθ and σθ to the maxi-

mum likelihood estimates for all N subjects:

µ̂ML
θ , σ̂ML

θ = argmax
µ,σ

P (A | µθ, σθ)(8)

= argmax
µ,σ

N∏
i=1

∫
dθiP (Ai | θi)P (θi | µθ, σθ) ,

where A = {Ai}Ni=1.
We find the ML estimates via an EM algorithm. In the E-step, we perform a Laplace

approximation to the individual posterior distributions of model parameters:

(9) P (θi | Ai) ≈ N(θ
MAP (k)
i , θ

σ(k)
i ) ,

where N(θ
MAP (k)
i , θ

σ(k)
i ) denotes a normal distribution over θi at each step k of the EM

algorithm, with mean θ
MAP (k)
i and approximate variance θ

σ(k)
i , which  is  derived  from  the 

iHessian of the posterior at its maximum θMAP (k)
.

In the M-step, we use this approximation to optimize for µθ and σθ: differentiating the
likelihood (Equation 8) with respect to µθ and σθ yields updates for the prior mean and
variance as

µ
(k)
θ =

1

N

∑
i

θ
MAP (k)
i(10)

σ
(k)
θ =

1

N

∑
i

[(θ
MAP (k)
i )2 + θ

σ(k)
i ](µ

(k)
θ )2.(11)

Validity of these fitting procedures was confirmed in Monte Carlo simulations using
simulated data with a known decision process.

5. Model validation

We asked whether the computational dual-control model, which assumes contributions
of separate model-free and model-based systems to behavioral choice, was supported for
our present data. To this end, we fitted six different decision models to the data assuming
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different combinations of a model-based system, a model-free system, and a tendency to 
repeat previous first-stage actions (for the list of models see Figure S3). We wanted to 
determine which model was most supported by the data, where good models are able to 
explain the current data without being able to explain very different data as well (cf. Huys et 
al., 2011).

Ideal Bayesian model comparison relies on the posterior log probability logP (M | A)
of each model M given the observed choices A. We assumed a flat prior on the models,
reflecting the assumption that all models were equally likely a priori. For model comparison
we therefore instead used the model likelihood logP (A |M) of the data given each of the
models. This likelihood involves integrals over parameters at the prior group and at the
individual subject level. We approximated the group-level integral via (Kass & Raftery,
1995):

logP (A |M) =

∫
dµθ

∫
dσθ P (A | µθ, σθ)P (µθ, σθ |M)(12)

≈ −1

2
BICint = logP (A | µ̂ML

θ , σ̂ML
θ )− 1

2
|M | log(|A|)

The log likelihood logP (A | µ̂ML
θ , σ̂ML

θ ) contains integrals at the second level, i.e.,
over individual subject’s parameters θi, which we approximated via importance sampling
(MacKay, 2003):

logP (A | µ̂ML
θ , σ̂ML

θ ) =
∑
i

log

∫
dhP (Ai | h)P (h | µ̂ML

θ , σ̂ML
θ )(13)

≈
∑
i

log
1

K

K∑
k=1

P (Ai | hk) ,

where K = 1000 indicates the number of samples drawn from the empirical prior distribu-
tion hk ∼ P (h | µ̂ML

θ , σ̂ML
θ ).

Figure S3 shows the BICint scores for each of the tested models. The analysis clearly
favors the full model, which includes model-free and model-based systems as well as a
repetition factor, over all simpler nested models, and thus supports the dual-control model
for the present data.

We computed the total ”predictive probability” as

(14) P (A | {θ̂MAP
i }Ni=1) =

N∏
i=1

T∏
t=1

P (ait | st, θ̂MAP
i ) .

Note that we term this probability ”predictive” because it determines the probability of
the next choice at given all previous choices by the subject. However, model predictions
rely on parameters that were fitted to all individual subject’s choices. We tested whether

individual subjects’ predictive probabilities T

√
P (A | θ̂MAP

i ) were significantly higher than

chance using a binomial test. The winning model predicted choices better than chance
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Figure S3. BICint scores for six models testing the presence of the three
components (1) model-based control (2) model-free control and (3) a repeti-
tion factor ρ. The results clearly support the model incorporating all three
components (indicated with a red star).

for 19 out of 27 subjects (p < .10), but did not significantly fit the data from the re-
maining 8 subjects (p > .10). A logistic regression indicated that DSST scores did not
have a significant influence on whether an individual subject’s model fit was successful
(b = 0.061, SE = 0.033, t = 1.85, p = .065). We also computed the overall predictive prob-

ability for all choices by all subjects as TN

√
P (A | {θ̂MAP

i }Ni=1) = 0.60, and this absolute

measure of model fit highly significantly exceeded chance level (p < .001).
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Figure S4. Predicted repetition probabilities as a function of observed
repetition probabilities for each individual subject.

Next, we asked whether the softmax was an adequate link function for computing choice
probabilities. It is visible in Figure S4 that predicted repetition probabilities closely
matched observed repetition probabilities, supporting the softmax as a reasonable link
function.
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Figure S5. Observed (left panel) and simulated (right panel) repetition
probabilities after rewarded versus unrewarded trials and common (blue)
versus uncommon (red) transitions. Values were averaged across all 27
subjects, and across 100 simulation runs for each subject. The model well
captures the observed pattern of a main effect of reward and a reward x
transition interaction.

We further tested the winning model and the best-fitting individual subject parameters
θMAP
i by using them to simulate choice data on the present two-step task. Figure S5 shows

that model predictions were well in line with the observed pattern of overall results. We split
the model predictions by whether the θMAP

i parameters were taken from individuals with
a low, medium, or high DSST score. It is visible in Figure S6 that the model successfully
captured the observed pattern of results for the DSST groups.

Overall, these results support the validity of the present modeling analyses.
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Figure S6. Observed (upper panels; cf. Figure 2A-C) and simulated (lower
panels) repetition probabilities after rewarded versus unrewarded trials and
common (blue) versus uncommon (red) transitions for three different levels
of low (left panels), medium (middle panels), and high (right panels) DSST
scores. Each panel contains data from N = 9 subjects; simulations as in
Figure S5.
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