## SUPPORTING INFORMATION

## Phylogeography of the Cow Knob Salamander (*Plethodon punctatus*): populations on isolated Appalachian mountaintops are disjunct but not divergent

Frontiers in Amphibian and Reptile Science

Matthew R. Graham, William D. Flint, Alexsis M. Powell, Victor Fet, Thomas K. Pauley

| Locus | Primer    | Sequence                               | Source                     |
|-------|-----------|----------------------------------------|----------------------------|
| Cytb  | Pglut-F1b | 5'-GGTCTGAAAAACCAATGTTGTATTC-3'        | Wiens et al. (2006)        |
|       | Pthr-R2b  | 5'-GCCCCCAATTTTTGGYTTACAAG-3'          | Wiens et al. (2006)        |
| ND4   | ND4(F)    | 5'-CACCTATGACTACCAAAAGCTCATGTAGAAGC-3' | Arévalo et al. (1994)      |
|       | Ephist    | 5'-TCRTTTTTAGGGTCACRGCCTAG-3'          | Wiens et al. (2006)        |
| GAPD  | GAPD-F    | 5'-ACCTTTAATGCGGGTGCTGGCATTGC-3'       | Fisher-Reid & Wiens (2011) |
|       | GAPD-R    | 5'-CATCAAGTCCACAACACGGTTGCTGTA-3'      | Fisher-Reid & Wiens (2011) |

Table S1. Primers to used amplify DNA from *Plethodon punctatus*.

## **Literature Cited**

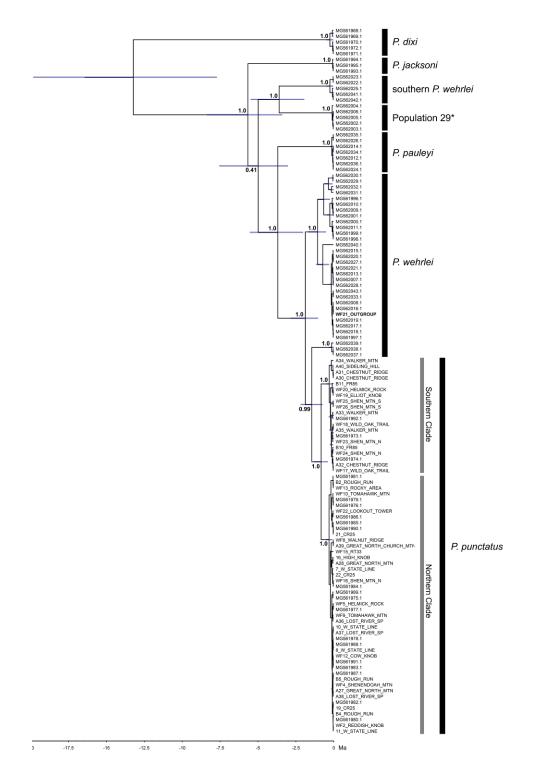
- Arévalo, E., Davis, S. K., & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the *Sceloporus grammicus* complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387–418.
- Fisher-Reid, M. C., & Wiens, J. J. (2011). What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from *Plethodon* salamanders and 13 other vertebrate clades. BMC Evolutionary Biology, 11(1), 300.
- Wiens, J. J., Engstrom, T. N., & Chippindale, P. T. (2006). Rapid diversification, incomplete isolation, and the "speciation clock" in North American salamanders (genus *Plethodon*): testing the hybrid swarm hypothesis of rapid radiation. Evolution, 60(12), 2585–2603.

| Interpretation                    | Parameter        | Distribution | Min     | Max       | Mean                  | SD                    | Conditions         |
|-----------------------------------|------------------|--------------|---------|-----------|-----------------------|-----------------------|--------------------|
| Ne Northern (most recent)         | N <sub>N</sub>   | Uniform      | 10      | 100,000   | -                     | _                     | > N <sub>NB</sub>  |
| Ne Southern (most recent)         | Ns               | Uniform      | 10      | 100,000   | -                     | _                     | > N <sub>SB</sub>  |
| <i>Ne</i> Northern (bottleneck)   | N <sub>NB</sub>  | Uniform      | 10      | 100,000   | -                     | _                     | < N <sub>NPD</sub> |
| Ne Southern (bottleneck)          | N <sub>SB</sub>  | Uniform      | 10      | 100,000   | -                     | _                     | < N <sub>SPD</sub> |
| Ne Northern (post divergence)     | N <sub>NPD</sub> | Uniform      | 10      | 100,000   | -                     | -                     | -                  |
| Ne Southern (post divergence)     | Nspd             | Uniform      | 10      | 100,000   | -                     | -                     | -                  |
| Ancestral divergence time*        | t <sub>A</sub>   | Normal       | 297,100 | 1,225,000 | 761,045               | 236,700               | -                  |
| Northern expansion time           | t <sub>NE</sub>  | Uniform      | 0       | 1,225,000 | -                     | _                     | < t <sub>NB</sub>  |
| Southern expansion time           | t <sub>se</sub>  | Uniform      | 0       | 1,225,000 | -                     | -                     | < t <sub>SB</sub>  |
| Northern bottleneck time          | t <sub>NB</sub>  | Uniform      | 0       | 1,225,000 | -                     | _                     | < t <sub>A</sub>   |
| Southern bottleneck time          | t <sub>SB</sub>  | Uniform      | 0       | 1,225,000 | -                     | _                     | < t <sub>A</sub>   |
| Mutation model (per generation)** | U                | Normal       | _       | _         | 3.00x10 <sup>-8</sup> | 6.71x10 <sup>-9</sup> | НКҮ                |

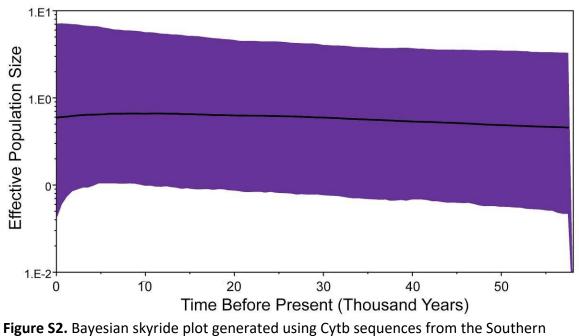
**Table S2.** Prior distributions of parameters used in DIYABC analysis of Cytb from *Plethodon punctatus*.

\*Divergence time was estimated from the BEAST analysis. Standard deviation (SD) is based on 95% quantiles. Min and Max values are 97.5% quantiles.

\*\*Calculated using mutation rates from Kuchta et al. (2016) (mean 0.00623, SD 0.00149) scaled by a generation time of 4.5 years.


 Table S3. Posterior distributions of parameters for Scenario 3 (Series A) from the DIYABC analysis of Cytb samples from throughout the range of *Plethodon punctatus*.

 Descent the range of *Plethodon punctatus*.


| Parameter      | Mean                  | Mode                  | Median                | q05                   | q95                   |
|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Ns             | 202,000               | 202,000               | 198,000               | 113,000               | 306,000               |
| N <sub>N</sub> | 227,000               | 221,000               | 224,000               | 129,000               | 337,000               |
| tA             | 662,000               | 668,000               | 670,000               | 473,000               | 823,000               |
| u              | 1.59x10 <sup>-8</sup> | 1.45x10 <sup>-8</sup> | 1.57x10 <sup>-8</sup> | 1.45x10 <sup>-8</sup> | 1.84x10 <sup>-8</sup> |

**Table S4.** Comparison of scenarios tested in the DIYABC analysis. Scenarios with the highest posterior probability in each series (based on a logistic regression estimate), and non-overlapping 95% confidence intervals (in brackets), are highlighted in bold. Note that Scenario 3 had the highest posterior probability of the Series A comparisons, so it was assessed again in Series B as Scenario 1. Thus, the same scenario had the highest posterior probability values in both series.

| Scenario   | Probability Values     |  |  |  |
|------------|------------------------|--|--|--|
| Series A   |                        |  |  |  |
| Scenario 1 | 0.0598 [0.0000,0.6582] |  |  |  |
| Scenario 2 | 0.1436 [0.0000,0.7887] |  |  |  |
| Scenario 3 | 0.7966 [0.6396,0.9537] |  |  |  |
| Series B   |                        |  |  |  |
| Scenario 1 | 0.5747 [0.5480,0.6015] |  |  |  |
| Scenario 2 | 0.1563 [0.1026,0.2099] |  |  |  |
| Scenario 3 | 0.2238 [0.1890,0.2586] |  |  |  |
| Scenario 4 | 0.0452 [0.0036,0.0867] |  |  |  |
| Scenario 5 | 0.0000 [0.0000,0.0000] |  |  |  |
| Scenario 6 | 0.0000 [0.0000,0.0000] |  |  |  |
|            |                        |  |  |  |



**Figure S1.** Bayesian chronogram for the *Plethodon wehrlei* species group generated using Cytb data from Kuchta et al. (2018) and this study. The *P. wehrlei* sample in bold was used as an outgroup in our analyses that focused on *P. punctatus*.



clade of *Plethodon punctatus*.