
Appendix: Derivation of the exact RG flow equation (24)

The Wetterich equation (5) can be written as

∂tΓk[ϕ] =
1

2
Tr
{
Gk ∂tRk

}
, (80)

where t = ln k and

Gk =
[
Γ
(2)
k [ϕ] +Rk

]−1
(81)

is the inverse matrix of Γ
(2)
k [ϕ] +Rk. The matrix elements of Γ

(2)
k [ϕ] for the scalar model

considered here are (
Γ
(2)
k

)
(q,q′) =

δ2Γk[ϕ]

δϕ(−q) δϕ(q′)
(82)

in accordance with (8). The RG flow equation for Γ
(2)
k (p1,p2) is obtained from (80) by

performing certain functional derivatives to obtain Γ
(2)
k (p1,p2) from Γk, following the

definition (11), i. e.,
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∂tRk

}
. (83)

The derivative on the right hand side of (83) is further deciphered as follows. According to
the general formula for the derivative on an inverse matrix, i. e., Eq. (96) in [10], applied
to Gk given by (81), we have

δGk

δϕ(p)
= −Gk

δΓ
(2)
k

δϕ(p)
Gk . (84)

Applying this repeatedly for p = p2 and then for p = p1, we obtain
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(2)
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δΓ

(2)
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(2)
k

δϕ(p1)
Gk . (85)

The RG flow equation for Γ
(2)
k (p1,p2) of the desired form is obtained by inserting (85)

into (83). This treatment is straightforwardly generalized to obtain such RG flow equation

for the n-point function Γ
(n)
k (p1,p2, . . . ,pn) from

∂tΓ
(n)
k (p1,p2, . . . ,pn) =

1

2
Ω

n
2
−1Tr
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δnGk
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}
, (86)

applying the derivative with respect to ϕ(pi) sequentially for i = n, n− 1, . . . , 1. At each
step, the derivative operator acts according to the chain rule. It finally produces a series of
terms, corresponding to all possible combinations of that how the derivatives with respect

to specific ϕ(pi) act on Γ
(2)
k in a specific position of a chain. However, if several such

derivatives act on the same Γ
(2)
k , then they are ordered in accordance with the rule that

the derivative with respect to ϕ(pl) is performed before the derivative with respect to

ϕ(pj) if l > j (as we have defined at the beginning). A new Γ
(2)
k -derivative term of the

lowest order is generated and the sign is changed when the derivative operator acts on Gk
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according to (84). Therefore, the sign of a specific contribution with M Γ
(2)
k -derivative

terms is given by (−1)M . The order of a specific Γ
(2)
k -derivative term is increased by one,

if the derivative operator acts on it. As a result, we have

∂tΓ
(n)
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1
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m1 + . . .+mM = n

∑
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Gk
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(2)
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)
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)
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 ∂tRk

 , (87)

where the meaning of {jℓ(i)}nm1,...,mM
and jℓ(i) is already explained in the text below

Eq. (24). Our ordering rule means that j1(i) < j2(i) < . . . < jmi(i) holds for any given i.

Eq. (87) contains products of matrices. According to (82), the elements of the Γ
(2)
k -

derivative matrices are δmiΓ
(2)
k

δϕ
(
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)
δϕ
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)
· · · δϕ
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=
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= Ω−mi
2 Γ
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(
pj1(i),pj2(i), . . . ,pjmi (i)

,−q,q′
)
,

noting that the arguments of the n-point functions can always be exchanged.
Further on, up to the end of this Appendix, we consider a homogeneous field ϕ = const.

In this case, the matrix Gk is diagonal [10], whereas the n-point function is nonvanishing
only for zero sum of wave vectors, on which it depends (generalizing the consideration for
the 3-point function in Appendix A of [10]), i. e.,

Gk(q,q
′) = δq,q′ Gk(q) (89)

Γ
(2+mi)
k

(
pj1(i),pj2(i), . . . ,pjmi (i)

,−q,q′
)
̸= 0 only if Pi − q+ q′ = 0 , (90)

where Pi is defined by (28).
Further on, we calculate the matrix elements for the products of matrices in (87) at

ϕ = const, starting withGk
δm1Γ
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′) ,

which holds according to (88) and (89). To make such calculations for a matrix product

with two Γ
(2)
k -derivative matrices, a matrix with elements (91) is multiplied by a matrix

with elements  δm2Γ
(2)
k

δϕ
(
pj1(2)

)
δϕ
(
pj2(2)

)
· · · δϕ

(
pjm2 (2)

) Gk

(q,q′
)

(92)

= Ω−m2
2 Γ

(2+m2)
k

(
pj1(2),pj2(2), . . . ,pjm2 (2)

,−q,q′
)
Gk(q

′) .
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Applying the matrix-product rule, we set q′ = p in (91) and q = p in (92) and sum up
over p within p < Λ. According to condition (90), the only nonzero contribution appears
at p = q−P1 = P2 + q′, which is possible only if P1 +P2 − q+ q′ = 0 holds. Thus, we
have Gk

2∏
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Ĝk(q−P1)
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where Ĝk includes the cut-off function, as defined in (25), which appears due to the
condition p < Λ.

This procedure can be continued to obtain expressions for products with any number

of Γ
(2)
k -derivative matrices, recursively multiplying (93) by corresponding matrices on the

right hand side. In particular, we haveGk
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(
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,−P3 − q′,q′
)
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andGk
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The rules of evolving these matrix-product elements are already evident from these cal-
culations. The products with M n-point functions, evaluated at m1 + · · ·+mM = n and
q′ = q, represent specific contributions to the trace in (87) at the given M . These are
identified with the corresponding contributions to (24) when Ω−1Tr →

∫
q (a standard

procedure). Taking into account (30) and (90), these contributions are nonvanishing only
at
∑n

ℓ=1 pℓ = 0, and the function arguments in these product expressions are precisely
consistent with (26), (27) and (29) inserted into (24). In particular, P1 = 0 holds at
M = 1 according to (30) and, therefore, (29) gives Q̀1 = −q, Q1 = q for M = 1 in
agreement with (91) at q′ = q. The term Gk(q

′) in (91)–(95) is replaced by Ĝk(q
′), since

q′ < Λ. It makes the final form of the RG flow equation exactly such as written in (24).
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