
   

Supplementary Material 

1 Optimization Algorithm Design 

1.1 Algorithm Inputs 

A processing algorithm in MATLAB (MathWorks Inc.) calculated the loading rate using the ground 
reaction force (GRF) recorded at a frequency of 2000 Hz using an instrumented split-belt treadmill 
(Bertec, Columbus, OH, USA) during each combination. We ran the GRF through a custom MATLAB 
script that stride normalized the GRF data and then filtered the GRF using a fourth-order low-pass 
Butterworth filter with a 20 Hz cut-off frequency. The algorithm calculated the loading rate using the 
vertical instantaneous loading rate. We calculated the loading rate as the slope of the GRF from 20% 
of the first peak until 80% of the first peak. The calculated loading rate and the associated shoe heel 
height and pylon height were fed as inputs into the human-in-the-loop optimization algorithm.  

1.2 Gradient Descent 

Since we need two points to be able to calculate the gradient, we needed to evaluate the settings near 
the estimated center location using the following equation: 

 𝐆𝐮𝐞𝐬𝐬𝐱,𝐲 = 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐱,𝐲 −
𝟏∗𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥𝐱,𝐲

𝟐
    (2) 

where Interval/,0 determined how far from the estimate we wanted the guess to be. The Interval/,0 
was set at 1.5 and 1.1 for shoe heel height and pylon height, respectively. These values were selected 
based on a preliminary simulation study. This equation prescribed the following combination to test: a 
specific shoe heel height and pylon height. This algorithm was run until three combinations were 
completed. 

After the initial three combinations had been tested, the human-in-the-loop optimization algorithm used 
a gradient descent search method to determine the following combination to be tested. The gradient is 
the slope of a function that allows us to predict the effect of various inputs. If the gradient is high, the 
function's slope will be steep, resulting in a faster learning speed. On the contrary, if the slope is zero, 
the learning will stop since a minimum of the function has been achieved. Ultimately, this would mean 
that an optimum has been achieved. By calculating the gradient, we evaluated which direction the 
function should head in. For this study, we evaluated the direction of the gradient for the last set of 
combinations. Since we had two parameters, we calculated the gradient in both the x and y direction: 
shoe heel height, and pylon height, respectively. We calculated the gradient of the last set of 
combinations tested in each direction using the following equation: 

 𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭𝐱,𝐲 =
𝐳(𝐞𝐧𝐝)5𝐳(𝐞𝐧𝐝5𝟏)

𝐱,𝐲(𝐞𝐧𝐝)5𝐱,𝐲(𝐞𝐧𝐝5𝟏)
    (3) 

where x was the shoe heel height setting, y was the pylon height setting, and z was the associated 
loading rate. 
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Using the gradient of the combinations tested drove the parameter settings to a local minimum by 
associating the gradient of the last set of combinations tested with the parameter settings tested. We 
used a scheduled gain (hyper-parameters) to help estimate the gradient where their value decreased as 
the number of iterations increased (Felt et al., 2015). These hyper-parameters were designed to slightly 
improve the gradient descent functionality (Felt et al., 2015). By allowing us to choose how much the 
parameters are varied as a function of the gradient, we can make the variation smaller and smaller over 
time. The algorithm estimated the center location of the following combination to be tested around 
which the following gradient was estimated using the following equation:  

 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐱,𝐲 = 𝐌𝐞𝐚𝐧8𝐱, 𝐲(𝐞𝐧𝐝 − 𝟏: 𝐞𝐧𝐝)@ − 𝛂𝟎∗𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭∗𝐀𝟎
(𝐀𝟎:𝐢𝛄)

  (4) 

where α;, A;, and γ were the hyper-parameters that helped train the human-in-the-loop optimization 
algorithm. 

In our experiment, we defined α;, A;, and γ for the shoe heel height and pylon height estimations. For 
shoe heel height, we set α;, A;, and γ at 1.8, 5.2, and 0.5, respectively. Additionally, for pylon height, 
we set α;, A;, and γ at 1.1, 3.1, and 1.0, respectively. These values were selected based on a preliminary 
simulation study.   

1.3 Successive Parabolic Optimization 

Once three combinations were completed, the following combinations were prescribed using a 
successive parabolic optimization. While gradient descent estimates the direction the function should 
head in, it does not estimate exactly where the optimum will be. A successive parabolic optimization 
is another technique used to find the minimum of a function. At this point, we fitted a paraboloid 
through the already completed combinations. Given the small range over which the two parameters 
were adjusted, we assumed there should be only one optimal combination. If the paraboloid function 
produced a non-U-shaped surface, the optimization process reverted to a gradient descent method. This 
is because the optimization would be restricted if the optimum were on the border of our possible 
combinations. However, if the paraboloid function produced a concave surface (i.e., presented a single 
optimal combination), the optimization process would continue using the paraboloid function. It should 
be noted that this evaluation was done independently for the x and y directions. For example, if the 
algorithm produced a concave surface in the x-direction but a non-U-shaped surface in the y-direction, 
successive parabolic optimization was used to determine the next x parameter setting, while gradient 
descent was used to determine the next y parameter setting. The optimization algorithm used the 
following paraboloid function for the successive parabolic optimization:  

 𝐳𝑭𝒊𝒕	 = 	𝐜𝟏𝐱𝟐 + 𝐜𝟐𝐱 + 𝐜𝟑𝐲𝟐 + 𝐜𝟒𝐲 + 𝐜𝟓    (5) 

where x, y, and z are shoe heel height, pylon height, and loading rate, respectively, cB is the constant 
intercept term, and cC to cD are the coefficients for each independent parameter setting. By updating 
this paraboloid fit as combinations are completed, the algorithm can also update its estimate of the 
optimal combination. The algorithm would prescribe the following combination to test by using the 
following equation:  

 𝐍𝐞𝐱𝐭𝐆𝐮𝐞𝐬𝐬𝐱,𝐲	 ≈ 	 5𝐜𝟐,𝟒
𝟐𝐜𝟏,𝟑

     (6) 
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where x and y are shoe heel height and pylon height, respectively, cF,D is the coefficient for the first-
order term for x and y, respectively, and cC,G is the coefficient for the second-order term for x and y, 
respectively. Being a paraboloid, the minimum of the function will be the optimal combination 
achieved by the algorithm for that participant. We expect that the optimal combination will have the 
lowest loading rate across all the possible combinations. 

2 Preliminary Optimization Algorithm Development Using Simulated Data 

During the development stages of this study, we pilot-tested algorithms based on preliminary data. We 
evaluated the effects of shoe heel height and pylon height on the loading rate on the contralateral limb. 
This helped develop software code that generated simulated data similar to experimental data. To test 
the effects of different algorithm versions, we first developed a program that generated simulated data. 
This simulated data is based on experimental pilot data from one participant with random noise added. 
By generating simulated data, we could pilot-test how well different human-in-the-loop optimization 
algorithms worked and determine the hyper-parameters. This methodology is similar to strategies used 
in previous studies (Felt et al., 2015; Ding et al., 2018). 

2.1 Parameter-Sweep Case Study for Simulated Data Generation  

As a preliminary step before conducting human-in-the-loop optimization, we collected data from one 
participant in which we tested all the possible combinations of shoe heel height and pylon height. Using 
this data, we plotted the relationship between shoe heel height and pylon height and their effects on 
contralateral limb loading (Supplementary Figure S1). Even though the goal of the algorithm was to 
reduce the loading rate of the contralateral limb, we used the data from both legs of the participants. 
Because of this, we were able to generate a greater variation of different types of simulated data that 
allowed us to develop, evaluate, and optimize our algorithm. We found that walking with different 
parameter combinations alters the loading rate on the contralateral limb. Additionally, the parameter 
sweep showed a minimum value or area, indicating an optimal parameter combination. Using this data, 
we could start developing the optimization algorithm. 

 

Supplementary Figure S1: Parameter sweep from preliminary case-study. The vertical axis shows 
different pylon height parameters with 1 being the lowest height and 4 being the highest height. The 
horizontal axis shows the different shoe heel height parameters with 1 being no height and 4 being the 
highest height. The bar on the right of the grid provides a color scale of the loading rate. The parameter-
sweep includes all 16 combinations and helped provide a visual on which combination of shoe heel 
height and pylon height produced the lowest (dark blue) and the highest (white) loading rate. 
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2.2 Simulated Data Generation 

From the pilot tests conducted, we developed a program that allowed us to generate simulated data 
with similar characteristics to the actual experimental data. The simulation program generated data 
based on a surface fitted through the pilot data with trial-to-trial variability. This variability is scaled 
to match the standard deviation of the difference between the fitted and actual data from the pilot test. 
We used this simulated data to test how well different human-in-the-loop optimization algorithms 
would work, similar to strategies used in previous studies (Felt et al., 2015; Ding et al., 2018). 
Additionally, we used this data to evaluate our human-in-the-loop optimization algorithm and fine-
tune our hyper-parameters (α;, A;, and γ). We created a script that allowed us to generate a plot using 
a third-order polynomial fit based on the simulated data (Supplementary Figure S2). This allowed us 
to visualize the grid search of all the conditions. Additionally, we used this plot to validate the 
functionality of the human-in-the-loop optimization algorithm. This means that if there was a local 
minimum present on the plot, we had an idea of not only which direction the algorithm should go but 
where the algorithm should end up. Essentially, this visual representation was used to verify the 
algorithm's accuracy and fine-tune our hyper-parameters (𝛼;, 𝐴;, and 𝛾). 

 

Supplementary Figure S2: Fitting the data. The human-in-the-loop optimization algorithm used a 
third-order polynomial to create a fit for the data. (A) 3-Dimensional view. the vertical axis shows the 
loading rate. The horizontal axis’ show the shoe heel height and pylon height. The third-order 
polynomial fitted the data as a contour plot which guided the algorithm to the optimal combination 
(dark square). (B) 2-Dimensional view. the vertical axis shows the loading rate. The horizontal axis 
shows the shoe heel height. The third-order polynomial displayed the data as a hilly landscape where 
the lowest loading rate (dark blue) was displayed, similar to a valley. 

We created a script that allowed us to generate simulated loading rate data according to the following 
function: 

 𝐳𝐅𝐢𝐭	 = 	𝐜𝟏𝐱𝟐 + 𝐜𝟐𝐱 + 𝐜𝟑𝐲𝟐 + 𝐜𝟒𝐲 + 𝐜𝟓𝐱𝐲 + 𝐜𝟔 + 𝐜𝟕𝛈  (7) 

where x, y, and z are shoe heel height, pylon height, and loading rate, respectively, cC to cK were 
optimized to fit the left leg loading rate data from the simulated pilot data, and η is random noise 
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between ± 0.5, and cK was chosen so that the variation of the simulated data around the surface 
determined by cC to cK mimics the variation of the measured pilot data. 

3 Performance Comparison of Different Candidate Human-in-the-loop Optimization 
Algorithms 

To select the human-in-the-loop algorithm for the study, we compared the performances of three 
candidate algorithms, including covariance matrix adaptation evolution strategy (CMA-ES), gradient 
descent, and successive parabolic optimization. After completing the study, we also briefly evaluated 
one additional candidate algorithm—Bayesian Optimization with Gaussian process—to investigate if 
it could have been a better alternative. 

The successive parabolic optimization was the algorithm described in the study. The gradient descent 
algorithm is similar to the algorithm from the study but does not use parabolic optimization. The CMA-
ES is based on the supplementary MATLAB code from Zhang et al. (Zhang et al., 2017). The Bayesian 
optimization algorithm employs the fitrgp function in MATLAB with a squared exponential kernel 
function to train the Gaussian process. Each algorithm was modified to work within the constraints of 
the current prosthesis optimization problem by limiting solutions to a 4x4 grid of possible combinations 
and constraining the tested conditions at each iteration to integer values only. 

For each human-in-the-loop algorithm, we first tuned its hyperparameters, such as the scheduled gain 
parameters in gradient descent, the step size parameter (s) in CMA-ES, or the number of initial points 
and the exploration-exploitation parameter (k) in Bayesian optimization. We adjusted the 
hyperparameters by performing a CMA-ES optimization to search for hyperparameters that minimize 
a cost function based on combinations to convergence and a penalty term if the combinations to 
convergence is not defined. The optimization of the hyperparameters was restarted 20 times, after 
which we selected the median of the tuned settings for each hyperparameter to evaluate the 
performance of each algorithm. 

After tuning the hyperparameters, we assessed the performance of each tuned algorithm based on 
combinations to convergence. We ran each algorithm 20 times with the same tuned hyperparameters 
but with slightly different simulated data using the random noise generation in the simulated data. We 
then evaluated the mean and standard deviation of the combinations to convergence (Supplementary 
Figure S3). 

 

Supplementary Figure S3: Comparison of performance of different candidate human-in-the-
loop optimization algorithms on simulated data. (A) mean ± SD of combinations to convergence of 
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20 simulated optimizations with a maximum of 32 combinations. If convergence was not achieved 
after 32 combinations, a score of 33 was given. (B) mean ± SD of error in the estimated optimum. The 
presented error is the mean of the error in the x and y direction (shoe heel height and pylon height, 
respectively). 

The results of the simulated comparison of different algorithms suggest that successive parabolic 
optimization performed better than the other algorithms, which is surprising. The relatively lower 
effectiveness of the other algorithms may be due to the small resolution of the grid of possible 
combinations. Another possibility is how we evaluated algorithms based on convergence disfavors 
algorithms that tend to include combinations away from the optimum to avoid getting stuck in local 
minima. Finally, the parabolic optimization may have worked well because we used a paraboloid-like 
function to generate simulated data. 

4 Quantifying Performance 

Previous studies have used time-to-convergence as a performance metric for human-in-the-loop 
optimization algorithms (Felt et al., 2015; Zhang et al., 2017; Ding et al., 2018). We used a similar 
convergence metric to evaluate the performance of our algorithm (Supplementary Figure S4). An 
optimal combination was said to be achieved when prescribed combinations remained between the 
parameter setting one above and one below the estimated optimal parameter setting. In addition, the 
number of combinations it takes before combinations stay within the band was defined as 
‘combinations-to-convergence.’ 

 
Supplementary Figure S4: Evaluation of performance using the convergence metric. The vertical 
axis shows the parameter setting guesses for either shoe heel height or pylon height, and the horizontal 
axis is the number of combinations tested. Ideally, the optimization algorithm should converge towards 
the optimal combination as quickly as possible (i.e., the minimal number of combinations to 
convergence) and as accurately as possible. (A) Example of a well-configured algorithm that finds the 
optimal parameter setting in a small amount of time and stays within the determined band (B) Example 
of a sub-optimal algorithm that takes a long time to find the optimal parameter setting. 

5 Analyses of secondary biomechanical outcome variables 

5.1 Per subject HIL Optimization 
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Supplementary Figure S5: HIL Optimization Plots. These are the patterns of each HIL optimization 
protocol for each participants. Shoe heel height and pylon height are represented as a solid and dashed 
line, respectively. ‘CTC’ refers to the corresponding combinations to convergence metric for each 
participant.  

5.2 Per subject Sweep 

 

Supplementary Figure S6: Sweep Plots. We fit a second-order polynomial that was a function of 
shoe heel height and pylon height against the loading rate for each participant to determine the 
individual optimal combination. 

5.3 Loading Rate Validation Comparison 

For the participants who converged (n = 6), the average loading rate from the sweep optimum was 10.9 
± 1.3 kN s-1. The average loading rate from the HIL optimization optimum was 10.4 ± 1.3 kN s-1. The 
loading rate in the neutral combination setting (combination 1,3) was 15.3 ± 3.9 kN s-1. There was no 
significant difference in the loading rate between the two optimal combinations (P = 0.062, 
Supplementary Figure S7). The sweep optimum and the HIL optimization optimum had a significantly 
lower loading rate than the neutral combination (P < 0.05). 
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Supplementary Figure S7: Loading rate comparison. The average loading rate across participants 
who converged to an optimal combination from the sweep, the HIL optimization (HIL), and the neutral 
combination. The error bars represent the standard deviation across participants (n = 6). 

5.4 Ground Reaction Force Profiles 

In addition to evaluating the effects of the two optimization methods (sweep and HIL optimization) on 
our main objective parameter (vertical instantaneous loading rate), we also qualitatively evaluated the 
entire loading rate in this chapter. The purpose of this qualitative evaluation is to investigate how both 
optimization methods minimized loading rates. For example, does this happen by minimizing the entire 
ground traction force signal, or did a loading rate reduction happen at the expense of an increase in 
another metric (e.g., the peak)? 

We plotted the ground-reaction force profile of each of the optimized combinations and the neutral 
combination to understand how the changes in loading rate are obtained by alterations in the ground-
reaction force (Supplementary Figure S8). Although the sweep optimum and the HIL optimization 
optimum reduced the loading rate, these combinations produced a later but higher initial peak ground 
reaction force than the neutral combination. 
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Supplementary Figure S8: The average ground reaction force profiles for the sweep optimum 
(orange), the HIL optimization optimum (dark orange), and the neutral combination (light orange) 
across all participants (n = 8). 

5.5 Relative Limb Height Comparison 

To understand how the changes in the pylon height and shoe heel height produce changes in loading 
rate, we also analyzed a measure of the functional leg length difference produced by changes in pylon 
height and shoe heel height. To approximate the produced relative limb height differences between 
conditions, we used a motion capture system (VICON Vero, Oxford Metrics, UK) and placed retro-
reflective markers on the bony landmarks of the left and right anterior superior iliac crest of each 
participant. 

We evaluated if there was a significant difference in relative limb height between the optimal from the 
two protocols (sweep and HIL optimization), the neutral combination (combination 1,3), and walking 
without the device. For this purpose, we used one-way ANOVA with repeated measures. If there was 
a significant difference, we used a post-hoc paired t-test. 

We used the z position of the left and right anterior superior iliac crest to determine if conditions 
resulted in a relative limb height difference due to a sideways pelvic tilt during standing. The height 
difference was calculated using the following equation: 

 𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞	𝐋𝐢𝐦𝐛	𝐇𝐞𝐢𝐠𝐡𝐭𝐀𝐒𝐈 =	𝐀𝐯𝐠. 𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝐋𝐞𝐟𝐭 	− 	𝐀𝐯𝐠. 𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞𝐑𝐢𝐠𝐡𝐭 (8) 

where the Avg. Distance was calculated using the average z-position from the first 22 frames exported 
from motion capture, as these initial frames were consistently tracked across all participants. From the 
one-way ANOVA with repeated measures, there was a significant effect of the optimal parameter 
combinations on the relative limb height (P < 0.05, Supplementary Figure S9). The post hoc paired t-
tests found no significant difference in limb height between the neutral combination and without the 
knee crutch (P = 0.174). The pelvis was significantly elevated on the side of the contralateral limb in 
the HIL optimization optimum compared to walking without the knee crutch (P < 0.05). Additionally, 
the pelvis was significantly elevated on the side of the contralateral limb leg in the sweep optimum 
than without the knee crutch (P < 0.05). The sweep and HIL optimization optimum had no significant 
difference in limb height (P = 0.092). There was no significant difference in relative limb height 
between the sweep optimum and the neutral combination and the HIL optimization optimum and the 
neutral combination (P = 0.065 and 0.228, respectively). 
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Supplementary Figure S9: Relative limb height differences. The average distance from the left to 
right anterior superior iliac crest across all participants for the following conditions: optimal 
combination determined by the sweep (sweep), the optimal combination determined by the HIL 
optimization (HIL), the neutral combination, and without the knee crutch. The error bars represent the 
standard deviation. The asterisks indicate significant differences (n = 8). 

6 Variability Analyses 

6.1 Effects of Shoe Heel Height and Pylon Height on Stride-to-Stride Variability 

In addition to analyzing secondary biomechanical outcomes, we wanted to evaluate the stride-to-stride 
variability between parameter combinations. If parameters close to the optimum have greater 
variability in loading rate, this could result in a more variable performance of the HIL optimization 
algorithm. To perform this analysis, we first calculated the loading rate of individual strides (this is 
different from the analyses in the main study, which calculated the loading rate on the mean stride of 
one minute or longer). Next, we calculated the coefficient of variation between the strides for each 
parameter combination in the sweep protocol for each participant. To analyze how variable the loading 
rate was as a function of the parameter combinations, we fit a second-order polynomial that was a 
function of shoe heel height and pylon height against the coefficient of variation for each participant 
(Supplementary Figure S10). 

 

Supplementary Figure S10: Coefficient of variation plots. We used a second-order polynomial for 
each participant to evaluate the variation between parameter combinations. 

To evaluate if there is an overall trend of effects of parameter combinations on stride-to-stride 
variability, we used the coefficient of variation from each participant from the sweep protocol to run a 
linear mixed-effect model. We used the following linear mixed-effect model (9) to study the effects of 
shoe heel height and pylon height on the coefficient of variation across parameter combinations: 

 𝐳𝐅𝐢𝐭 =	𝐜𝟏𝐱𝟐 + 𝐜𝟐𝐱 + 𝐜𝟑𝐲𝟐 + 𝐜𝟒𝐲 + 𝐜𝟓 (9) 

where x, y, and z are shoe heel height, pylon height, and coefficient of variation, respectively, terms cC 
to cD are the coefficients for each independent parameter setting, and cB is the constant intercept term. 
We found no statistical significance for each of the terms (P-values were 0.225, 0.128, 0.823, and 0.743 
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for shoe heel height, the square of shoe heel height, pylon height, and the square of pylon height, 
respectively; Supplementary Figure S11). It appears that there is a trend that lower pylon heights result 
in smaller stride-to-stride variability. However, findings from the statistical analysis suggest that the 
step-to-step variability in loading rate did not change in a consistent way as a function of shoe heel 
height and pylon height (e.g., walking with lower heel heights was not less variable).  

 

Supplementary Figure S11: Linear mixed-effect model. We used a 2nd order polynomial to analyze 
the effect of shoe heel height and pylon height on the stride-to-stride loading rate variability. (A) The 
surface plot of the linear best-fit model. The pylon height setting is on the vertical axis, and the shoe 
heel height setting is on the horizontal. The color bar represents the coefficient of variation, where light 
blue is the highest and dark blue is the lowest. (B, C) 2-Dimensional plot. The effect of shoe heel 
height (B) and pylon height (C) on the step-to-step variability. This 2-dimensional plot was taken from 
the middle point of pylon height and shoe heel height from (A), the mean of conditions 2 and 3. The 
circles and error bars in (B) represent the mean ± standard deviation of all pylon heights at each shoe 
heel height setting. The circles and error bars in (C) represent the mean ± standard deviation of all shoe 
heel heights at each pylon height setting (n = 8). 

Since we used the neutral parameter combination in the familiarization session (session 1), we also 
wanted to compare the step-to-step variability in the neutral parameter combination to all other 
parameter combinations. We calculated the coefficient of variation for the neutral parameter 
combination (Supplementary Figure S11) and calculated the mean coefficient of variation across all 
the other combinations. Using a paired t-test, we found that the neutral parameter combination had a 
significantly lower coefficient of variation than all other parameter combinations (P < 0.05, n = 8). 
This could suggest that participants were more habituated to the neutral condition. 
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Supplementary Figure S12: Coefficient of variation for the neutral parameter combinations. We 
calculated the coefficient of variation for the neutral parameter combination for each participant.  

6.2 Analysis of Trial-to-Trial Repeatability 

We did not purposively repeat conditions in order to perform a repeatability analysis; however, within 
the HIL optimization protocol, certain combinations were repeated. In this chapter, we analyzed these 
repeated conditions to understand whether the fact that certain repeated combinations produced 
different results could explain HIL optimization performance.  

First, we identified for each participant which combinations were repeated. Each participant had at 
least one combination that occurred twice. Next, we calculated the variation coefficient between those 
repeated combinations. On average, the coefficient of variation of the repeated combinations in the 
HIL optimization protocol is 0.086 ± 0.046. A coefficient of variation below 0.10 is considered good.  

As another point of reference, we compared the coefficient of variation of these repeated combinations 
to the variation among all the combinations in the HIL optimization protocol. Interestingly when we 
calculate the mean and standard deviation of the coefficient of variation of all HIL combinations of 
each participant, this only amounts to 0.146 ± 0.063. In summary, it appears that the variation in loading 
rates obtained by changing combinations is only slightly over 50% larger than the variation due to the 
repeatability of the measurements. This relatively high noise-to-signal ratio could partially explain the 
limited HIL optimization performance. 

To further investigate this finding, we calculated if there is a correlation between the ratio of the 
coefficient of variation of the repeated combinations versus the coefficient of variation of all 
combinations and the HIL optimization performance expressed as combinations to convergence 
(Supplementary Figure. S13). This analysis suggests that participants with a more favorable noise-to-
signal ratio had a smaller combinations to convergence and vice versa. This finding should be nuanced, 
however, since one of the two participants who did not show convergence did not follow this trend 
(this participant seemed to have had good repeatability compared to the coefficient of variation of all 
the combinations in the HIL protocol). 
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Supplementary Figure S13: Relationship between a noise-to-signal ratio metric and time-to-
convergence. The horizontal axis shows the ratio between the variability between combinations 
repeated during the HIL optimization protocol divided by the variability of all combinations in the HIL 
optimization protocol. The vertical axis shows combinations to convergence. Each circle represents 
one participant with the colors corresponding to the combinations to convergence value (light blue = 
no convergence, dark blue = 16 combinations to convergence). The black line shows a linear trend in 
data from participants with a defined combinations to convergence (noise-to-signal ratio from 
participants who did not have a defined combinations to convergence are also shown on the X-axis but 
not included in the trendline calculation). 

6.3 The Effect of Trial Duration on Loading Rate Error 

We evaluated the required walking duration for accurately determining a loading rate based on a 
supplementary analysis of the validation trials of the sweep optimum. For each participant, we 
determined the loading rate from an average trial from all three minutes of this trial. 3 minutes is a 
relatively long duration that even exceeds the duration required to estimate very noisy parameters such 
as metabolic cost (Selinger and Donelan, 2014; Zhang et al., 2017). Therefore, we assumed that 3 
minutes should definitely be long enough to determine a loading rate accurately, and we defined the 3-
minute loading rate as the “true” loading rate of the validation trial.  

Next, we determined loading rates from different lengths of subsamples going from 1 stride all the way 
to the maximum possible subsample duration of 3 minutes. Finally, we calculated the absolute error 
between the loading rates of the different subsample lengths and the true loading rate and plotted this 
versus the subsample duration (Supplementary Figure S14). This analysis shows that short recording 
durations have high variability between strides resulting in large errors, and longer loading rates have 
smaller errors. Plotting the mean trend from all participants shows that recording for 60s is sufficient 
to reduce the error below 5%. It should be noted that this analysis was done after the completion of the 
main experiment. The trial duration for the main experiment was chosen based on informal pilot testing 
rather than the present comprehensive analysis.  
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Supplementary Figure S14: Analysis of required sample duration. Lines show absolute error in 
loading rate as a function of sampling duration. Colored lines represent different participants. The thick 
black line is the mean trend from all participants. 


