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Supplementary Material 1 

Dataset 2 

The dataset is composed of the following monomers: glucose (Glc), glucosamine (GlcNAc), 3 
glucuronic acid (GlcA), fucose (Fuc), mannose (Man), mannosamine (ManNAc), galactose (Gal), 4 
galactosamine (GalNAc), galacturonic acid (GalA), neuraminic acid/sialic acid (Neu/Sia), 5 
arabinose (Ara), xylose (Xyl), ribose, rhamnose (Rha), abequose (Abe), and fructose (Fru). There 6 
are either no training structures or very few for Fru, ManNAc, Abe, Rha, ribose, GalA, and GlcA. 7 
Although some have a high average test Dice similarity coefficient, CAPSIF may not accurately 8 
predict protein residues that bind those carbohydrate species well. Finally, CAPSIF:Voxel does 9 
not perform well on predicting residues that bind Neu and Fuc, likely due to their 9-carbon 10 
structure and (L) conformation, respectively, as well as GlcNAc. 11 

The supporting Excel file Supplementary File S1 includes the following information: 12 

• PDB ID 13 
• Carbohydrate species 14 
• Per-PDB CAPSIF:V Dice coefficient 15 
• Per-carbohydrate species Dice coefficient 16 

Determination of Data Representation 17 

For voxel locations, we compared three representation choices, (1) α carbon (Cα), (2) β carbon 18 
(Cβ), or (3) Cα and Cβ positions for the location of voxels. We trained and tested each of these 19 
models as described in the Methods. We compared the Dice coefficient, sensitivity and positive 20 
predictive value to determine which representation performs best (Figure S1, Table S1). The Cβ-21 
only representation has an average test Dice coefficient of 0.551, with the Cα representation having 22 
a test Dice coefficient of 0.545, where when both the Cα and Cβ are included together in the 23 
representation, the architecture has an average test Dice coefficient of only 0.528. 24 

Finally, we further included orientation information of the residues themselves by concatenating 25 
the unit vector of the Cα to Cβ bond to the Cβ only representation. This representation had an 26 
average test metric of 0.597 (Cβ: Cα → Cβ vec) (Figure S1, Table S1). This method performed 27 
the best of all three representations, having the largest coverage and highest average test metrics. 28 
For these reasons, we chose Cβ: Cα → Cβ as our representation of coordinates and orientation for 29 
CAPSIF:V. 30 
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 31 
Figure S1: Test Dice coefficient assessment for different representations with CAPSIF:V 32 
architectures: Blue shows a Cβ representation including a normalized vector for alpha carbon 33 
(Cα) to Cβ, orange shows only a Cβ representation, green shows Cα representation, and red shows 34 
Cα and Cβ representation with all voxels. 35 

Table S1: Performance for each CAPSIF:V model. Dice coefficient is defined by (Eq 1); PPV 36 
and Sensitivity are same as Table 1. 37 

Voxel 
Representation 

 
Dice 

 
PPV 

 
Sensitivity 

Cβ 0.551 0.563 0.583 
Cα 0.545 0.535 0.620 

Cα + Cβ 0.528 0.555 0.554 
Cβ: Cα → Cβ 0.597 0.598 0.647 

    
Next, we investigated CAPSIF:G node representations, with the architecture described in Methods. 38 
We constructed the following variants: Cβ nodes with φ and ψ angles, Cβ and N, Cα, and C 39 
backbone nodes (and one-hot encoding for atom type, without φ and ψ angles). The Cβ only node 40 
representation performed the best with a Dice coefficient of 0.543. Further, Cβ takes a fraction of 41 
the time for predictions compared to the backbone due to graph construction time, therefore we 42 
chose the CAPSIF:G to be the Cβ model (Figure SI2, Table SI2). 43 
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 44 
Figure S2: Test Dice coefficient assessment for different representations with EGNN 45 
architectures. Blue shows all backbone atoms node representation, orange shows a Cβ node 46 
representation. 47 

Table S2: Performance for EGNN model node representation. Dice coefficient is defined by 48 
(Eq 1); PPV and Sensitivity are same as Table 1. 49 

EGNN 
Representation 

 
Dice 

 
PPV 

 
Sensitivity 

Cβ 0.543 0.541 0.590 
Backbone 0.458 0.396 0.647 

Random Assignment of Carbohydrate Binding Regions 50 

As a control, we compared CAPSIF to a random baseline. For example, for 200 amino acids with 51 
a 5.0% positivity rate, we randomly select 10 residues as a true label (sugar binding) and computed 52 
the Dice similarity coefficient (Eq 1). Using 1,000 trials for an endoglucanase (6GL0), which has 53 
331 total residues with 14 that experimentally bind carbohydrates, we observe a theoretical 54 
maximum Dice coefficient at approximately 0.08 when all residues are predicted as carbohydrate 55 
binders. At a rate of 5%, we observe a mean Dice coefficient of 0.046, where CAPSIF:V predicts 56 
that protein with a Dice coefficient of 0.963 (Fig SI 3A).  57 
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 58 
Figure S3: Dice coefficient assessment with random assignment smoothed with a kernel 59 
density estimate with bandwidth h = .04. (A) Dice evaluation of random assignment of an 60 
endoglucanase (6GL0). (B) Dice evaluation over entire test set. 61 

The dataset has, on average, 5.16% of protein residues bind carbohydrates. With random 62 
assignment over the entire dataset, random assignment at 5.16% yields an average 0.046 Dice 63 
score, where CAPSIF:V outperforms random assignment by over 12-fold at an average 0.593 Dice 64 
(Fig SI4B). 65 

Determination of CAPSIF probability threshold 66 

To determine the best probability cutoff value for the final activation function, we altered the 67 
threshold on the test dataset (Fig SI5). CAPSIF:V differs minimally for all thresholds while 68 
CAPSIF:G negatively correlates with increasing threshold and drops more sharply after a cutoff 69 
of 0.6. For both architectures we chose a threshold of 0.5. 70 

 71 
Figure S4: Test Dice coefficient assessment for CAPSIF architectures for various thresholds 72 
for the final sigmoid activation function. Blue represents CAPSIF:V, orange represents 73 
CAPSIF:G.  74 
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Comparison of Dice and DCC metrics 75 

 76 
Figure S5: Comparison of Dice score and DCC. (A) Per-target comparison of Dice and DCC 77 
for CAPSIF:V predictions on the test set. CAPSIF:V predictions (green) on (B) endo-1,4-β-78 
mannosidase 1ODZ and (C) C. pinesis DSM 2588 (4Q52) (gray).  79 
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Figures comparing CAPSIF:Voxel and CAPSIF:Graph predictions 80 

 81 
Figure S6: Prediction of carbohydrate binding sites on a protein surface using CAPSIF:V 82 
and CAPSIF:G. (A) Glc 6-phosphate dehydrogenase (PDB:5UKW), (B) streptococcal virulence 83 
factor (PDB:2J44), (C) MCR-1 catalytic domain (PDB:5ZJV), and (D) CBM40 (PDB:6ER3). 84 
Residue labels - green: true positive, blue: false positive, red: false negative, gray: true negative, 85 
cyan: bound carbohydrate; Dice coefficient is defined by eq (1) and DCC is distance from center 86 
to center of the predicted binding regions.  87 
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Comparison of RCSB and AF2 predicted structures 88 

 89 
Figure S7: AF2 structure prediction (red) of carbohydrate (purple) binding proteins 90 
compared to experimentally solved structures (white); (A) SUFU (PDB:4BL8) (B) E. coli 91 
aminopeptidase N (PDB:4XO5), (C) GspB siglec domain (PDB:5IUC), (D) GII.13 novovirus 92 
capsid P domain (PDB:5ZVC), (E) Glc 6-phosphate dehydrogenase (PDB:5UKW), and (F) 93 
surface GBP B (PDB:6E57). Dice coefficient is defined by eq (1). 94 
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 95 
Figure S8: CAPSIF:V accuracy is not correlated with AF2 accuracy or confidence. 96 
CAPSIF:V predictions on AF2 structure prediction metrics of carbohydrate binding proteins 97 
compared to RCSB structures. Change in Dice metric (∆Dice = AF2 Dice – RCSB Dice) compared 98 
to (A) the total Cα RMSD (log scale), (B) Local average pLDDT score of the carbohydrate binding 99 
region, and (C) total average pLDDT score of the entire structure. 100 
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 101 
Figure S9: Training and validation curves of both CAPSIF models.  102 
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 103 
Figure S10: Prediction of CAPSIF:V and CAPSIF:G on ATP and GTP-binding proteins. Both 104 
CAPSIF models predict similar regions on the ATP/GTP binding proteins, but only qualitatively 105 
capture the binding region of the phosphokinase, Acyl-CoA synthase, Rad, and Ras. 106 


