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1 Supplemental Methods 

1.1 Machine Learning Model Training Protocol 

To train our ML model (Supplemental Figure 1), we first z-score normalized each input CT scan by 
subtracting its mean, followed by division with its standard deviation. Then the images are re-
sampled using third-order spline interpolation. The target voxel spacing is set as the median spacing 
of the training samples. To improve the generalizability, a set of data augmentation techniques were 
randomly applied on the fly during training, including rotations, flipping, scaling, Gaussian noise and 
blur, and random changes of brightness, contrast, and gamma. During the training process, we set the 
batch size to 2 due to the GPU memory limitation and trained the DL model for 1000 epochs. 
Stochastic gradient descent (6) was used to optimize the model. The initial learning rate and Nesterov 
momentum were set to 0.01 and 0.99, respectively. We use the sum of cross-entropy and Dice 
loss as training loss. Supplemental Figure 4 shows the convergence of training loss, validation 
loss, and validation accuracy (measured by Dice) during training. 
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2 Supplementary Figures 

 

Supplemental Figure 1. Neural network architecture used for segmentation, based on nnU-Net (10). 
The vertical and horizontal numbers indicate the pixel and feature dimensions at each layer, 
respectively. All convolution and transposed convolution layers (except the last one) are followed by 
one instance normalization layer and one LeakyRelu layer, which are not illustrated in the figure. 
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Supplemental Figure 2. Robust segmentation of anatomical variants by our virtual dissection 
algorithm, despite the fact that the algorithm was not designed or tuned specifically to handle them. 
The primary analysis identified 29 cases with one of the 3 main variants: (a) common left PV ostia 
(N = 8; yellow-boxed); (b) LAA occlusion by a closure device (N=1; the closure devices were 
identified on the CT images); (c-d) and (g-h) supplemental PVs or ostial-branch PV (N=20; the 
parsed and missing PVs or branches are marked with yellow and red circle, respectively). There are 5 
cases that have a combination of these 3 main variants. For example, (e) showed both common left 
PV ostia and ostial-branch PV, while (f) had LAA occlusion and a supplemental PV. Our algorithm 
was able to segment 28/34 of identified variants with these identified variants, while the errors arose 
mostly from missing PVs or branches (e-h; red circled). 
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Supplemental Figure 3. Comparison between the ML model predicted CT segmentation (left) and 
ground truth manual outlining (right) overlaid on the input CT scans in representative samples 
selected using 75-th, 50-th, and 25-th percentile of segmentation accuracy in an independent Test 
cohort (N=100). Both anterior (top) and posterior (bottom) views are provided. Our model can 
accurately reveal anatomical landmarks, including roof, anterior, septal, posterior, and bottom walls. 
Acronyms: LA: Left Atrium, LSPV: Left Superior Pulmonary Vein, LIPV: Left Inferior Pulmonary 
Vein, RSPV: Right Superior Pulmonary Vein, RIPV: Right Inferior Pulmonary Vein, LAA: Left 
Atrial Appendage. 
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Supplemental Figure 4. The convergence of training loss, validation loss, the validation accuracy 
(measured by Dice) during training. 
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