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Measuring model conceptualization
While most construct validation studies and scale development done in education and social sciences have been under the reflective paradigm (1), many disciplines are now starting to explore the formative paradigm (2,3). This has generated an ongoing debate and research on the latter’s impact and adequacy for measurement (4–9). Each of these conceptualizations bears different ontological and practical premises.
Reflective measurement 
Ontological and conceptual issues
Measurement under the reflective conceptualization assumes a realist perspective (10), wherein the construct represents a real entity tangible through its measures. It is represented through a common factor underlying all observed measures (effect indicators) and is responsible for their covariance (11). This is the approach at the heart of Classical Test Theory (CTT) (also named True Score Theory) (12) and Item Response Theory (13,14). According to this, a causal relationship is assumed between the construct and its measures, with a change in the construct expected to cause equivalent changes (after accounting for error) in all its measures (2). The notion of measurement error is explicitly modeled at indicator-level (i.e., residuals) which is then used in factor-based Structural Equation Modelling (SEM) methodologies to provide more accurate depictions of correlation among constructs (i.e., through diattenuation; R. B. Kline, 2016) 
Factors (i.e., latent variables) are assumed unidimensional entities, composed of multiple interchangeable measures of the same phenomenon; and elimination of any of these does not alter the meaning of the factor (2). Testing of this dimensionality structure is usually performed using covariance-based methods like Confirmatory Factor Analysis (CFA), by comparing different a priori specifications based on substantive theory (2). Constructs, however, are unlikely to adhere to strict unidimensionality, whether intentionally - because the researchers wanted to capture different facets of the construct through to the use of subscales – or unintentionally – due to method factors (2), responses bias (16) or even item difficulty/popularity (17). As such, a multidimensional model can be estimated, with the most common one being the a) correlated first-order factor models, and b) higher-order models (18,19). Other options include the estimation of correlated residuals between indicators to accommodate covariation unrelated to the construct at hand (2).  
Correlated factor models freely estimate correlations among constructs composed of interchangeable indicators (c.f., Figure 2 in the main file). If the pattern and magnitude of correlations are substantial, and there is a strong conceptual justification, it is then tenable to estimate a higher-order model to account for this correlation (15,20). The two most common options for this are the hierarchical model and the bifactor model.
In both cases, the different first-order factors are conceptualized as being interchangeable indicators of the same, more abstract, construct (21). One of the main differences lies in the way the effect of the higher-order factor is conceived upon observed indicators: in the hierarchical model, the first-order factor fully mediates the effect of the higher-order construct on the indicators (c.f. model F4 in Figure 2, in the main file) while in the bifactor model, direct effects are estimated from the higher-order construct into the indicators (22,23). Bifactor model allows the analysis of group-factors (equivalent to the error terms on the hierarchical model, denominated disturbances) (18) which represent variance that is specific to a set of indicators, over and beyond that of the general factor (i.e., the higher-order construct); and modeling of independent relationships of the group and general factors on outcomes of interest (22,24). Because of these nuances, the bifactor model enables a more robust study of dimensionality and the interpretation of scores, which we will describe below.
Further iterations of the bifactor model have been developed as this approach gains traction within measurement assessment of many disciplines; namely non-symmetrical bifactor models - bifactor S-1 or S·I-1 models (25,26). These can be used when the group factors are not interchangeable indicators (i.e., random effects), and are structurally different (i.e., fixed effects) – as is usually the case when researchers conceptualize facets or domains. These allow for estimation of correlation among group factors – which in the canonical bifactor model are constrained to zero by definition (27) – and use a group factor or general measures of a construct to establish a reference frame based on previous theory, instead of allowing for data’s intricacies to do so by collapsing specific indicators or entire group factors – anomalies which are usual in the estimation of canonical bifactor models (26).
Scoring implications
Summation of indicators to obtain an approximation of the position of each individual on the latent variable is one of the most common uses for scales and measurement instruments in applied settings (28–30). This assumes that all indicators are equally weighted (i.e., unit-weighted), and represents one of many unrefined approaches to derive weights (31). Other options include optimal weighting (i.e., using loadings, or factor coefficients derived from CFA), and refined approaches which use all available information to produce factor scores. However, due to specific nuances of the common factor model (i.e., factor indeterminacy) (32), extracted factor scores might not be adequate for individual-level analysis or interpretation.  Despite being a simple, viable, and robust alternative in many settings (12,33), sum-scores’ adequacy rests on the dimensionality of the scale or instrument in question (34). 
When there is evidence of a strong factor underlying the results (with high indicator loadings), then the correlation of the derived total sum-score with the true factor score will be high. Otherwise, the use of scores for each of identified domains (as in the correlated factors model) might be justified (35). To assess the tenability of a total score, along with eventual subscales scores, a bifactor model can be fit, and various model-based indices derived (34,36,37). These allow the researcher to evaluate the amount of variance accounted for by the general factor and group-factors (specific domain), and whether their strength warrants statistical or empirical interpretation. It also allows testing whether the use of a unidimensional model in SEM settings would adequately convey the general trait, or whether a bifactor model should be fit.


Formative measurement
Ontological and conceptual issues
Two different views exist within this perspective according to the conceived ontology of the construct, causality, error, conceptual unity of its indicators, and subsequent estimation: a) causal indicators, and b) composite indicators (13). We will first address their differences and later describe their similitudes.
Causal indicators 
Similar to the reflective approach, a latent variable is still posited to exist, however, instead of it accounting for the variation in its indicators, causal indicators form, or influence the latent variable (2,3). Included indicators of a construct must share conceptual unity (i.e., pertain to the same concept), and must cover all possible content domains of the construct (38).  Measurement error is conceived at the construct-level through the estimation of a disturbance term, and it is posited to account for possible unincluded indicators or facets (13,39).
Estimation of this type of model can only be achieved in covariance-based methods (i.e. CFA or factor-based SEM) (40) by specifying two emitted paths from each causal-formative variable (41) – either intended outcomes or direct reflective measures of the same construct (creating a multiple indicators-multiple causes model). 
Composite indicators
Conversely to both earlier approaches, constructs defined by composite indicators (i.e., emergent variables, composites, or artifacts; Henseler, 2021) have no ascribed existence independent of measurement (constructivism) and thus, are created for mostly analytic purposes (operationalism) (4,10). Included indicators need not share conceptual unity (13), and are assumed to completely define the construct (42) since no error term is estimated– neither at item, nor construct-level (c.f., Figure 3 in the main file). 
Composite estimation is best done through variance-based methods (i.e., composite-based) (40), and one of its many available estimators – with the most studied estimator being Partial Least Squares (PLS) (43). In this framework, identification of the composite requires only a connected construct (i.e., non-isolation condition) (43).
Similitudes
Despite the aforementioned differences, both formative approaches share the fact that constructs are estimated as addictive - i.e., a linear combination of weighted indicators (20). These constructs are multidimensional by definition, formed by indicators that each capture a non-redundant facet of the concept; as such, removal of any indicator will change the meaning of the estimated construct (13,39,42). These constructs are not limited to a single first-order conceptualization and can take a similar multitude of structures implied by the reflective measurement paradigm, including a) correlated first-order and b) higher-order models (44). 
Theoretically, no degree of correlation among indicators is required (38,42), since a change in one indicator might not be accompanied by change in all indicators (28); in practice, high levels of correlations among indicators can cause issues of multicollinearity that difficult interpretation of parameters (45,46). 


Scoring implications
The main difference regarding scoring in formative models is that the score loses its conceptualization as a position on a posited trait, and is rather equated to an index – a summary of data reduction (10). As such, a simple sum-score might provide a parsimonious estimate, at the cost of distinct information in each indicator (47), especially when correlations among indicators are low (48). As in the reflective model, usage of differential weights might be an option to address this issue. An advantage of composite-based methods is the inherent determinacy of construct scores  (49) – since they represent linear combinations of weighted estimates. As such, weighting indicator scores by their regression weights will be equivalent to the estimated construct scores. 
Another implication, albeit disputed (50), is that of susceptibility to interpretational confounding in weight estimates  – i.e., difference in the weights attributed to each indicator depending on the variables used to identify the model (48,51–53). This is also argued to compromise theoretical development (54) and meaningful interpretation of the construct (55) since the same construct might change depending on the nomological network into which it is inserted. To resolve this issue, some researchers suggest the use of predetermined weights based on theory (21,28) or revert to the simpler solution: unit weights (42,46,56). 
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