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A APPENDIX

For completeness, this appendix covers the solutions of the analytical I method (cf. section 2.3.1) and the
spike response model formulation (cf. section 2.3.2) for the cases where not all involved time constants
are different. Furthermore, we include results of the execution time comparison of the different update
strategies with a finer time discretization than in section 3.1.2.

A.1 SPIKE RESPONSE MODEL FORMULATION OF BCPNN MODEL FOR CASES WITH
EQUAL TIME CONSTANTS

Spike response model (SRM) formulation of Ei trace with τzi = τe :

αi(t) =
t

τzi
e
− t
τzi Θ(t) (A1)

SRM formulation of Pi trace with τzi = τe and τ∗p 6= τzi :

πi(t) =
τ∗p
τzi
bi

[(
t

τ∗p
− bi

)
e
− t
τzi + bie

− t
τ∗p

]
Θ(t) (A2)

SRM formulation of Pi trace with τzi = τe = τ∗p :

1



Vogginger et al. Supplementary Material

πi(t) =
t2

2τ2zi
e
− t
τzi Θ(t) (A3)

SRM formulation of Pi trace with τzi 6= τe and τ∗p = τzi :

πi(t) = ai

[
t

τzi
e
− t
τzi + c

(
e
− t
τzi − e−

t
τe

)]
Θ(t) (A4)

SRM formulation of Pi trace with τzi 6= τe and τ∗p = τe :

πi(t) = ai

[
ai

(
e
− t
τzi − e−

t
τe

)
− t

τe
e−

t
τe

]
Θ(t) (A5)

A.2 ANALYTICAL UPDATE OF BCPNN MODEL FOR CASES WITH EQUAL TIME
CONSTANTS

Analytical update of Ei trace with τzi = τe :

Ei(t) = Ei(t
last) · e−

∆t
τzi + Zi(t

last)
∆t

τzi
e
− ∆t
τzi (A6)

Analytical update of Pi trace with τzi = τe and τ∗p 6= τzi :

Pi(t) = Pi(t
last) · e

−∆t
τ∗p + Ei(t

last)bi

(
e
− ∆t
τzi − e

−∆t
τ∗p

)
+ Zi(t

last)
τ∗p
τzi
bi

[(
∆t

τ∗p
− bi

)
e
− ∆t
τzi + bie

−∆t
τ∗p

]
(A7)

Analytical update of Pi trace with τzi = τe = τ∗p :

πi(t) = Pi(t
last) · e−

∆t
τzi + Ei(t

last)
∆t

τzi
e
− ∆t
τzi + Zi(t

last)
∆t2

2τ2zi
e
− ∆t
τzi (A8)

Analytical update of Pi trace with τzi 6= τe and τ∗p = τzi :

Pi(t) = Pi(t
last) · e−

∆t
τzi + ai

∆t

τzi
e
− ∆t
τzi Zi(t

last) +
(
Ei(t

last)− aiZi(tlast)
)
c

(
e−

∆t
τe − e

− ∆t
τzi

)
(A9)

Analytical update of Pi trace with τzi 6= τe and τ∗p = τe :

Pi(t) = Pi(t
last) · e−

∆t
τe + (ai)

2
(

e
− ∆t
τzi − e−

∆t
τe

)
Zi(t

last) +
(
Ei(t

last)− aiZi(tlast)
) ∆t

τe
e−

∆t
τe (A10)
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A.3 DISCRETE CHANGES OF LEARNING RATE κ

By changing the learning rate κ, one can control the speed of learning in BCPNN networks, e.g. to freeze
the synaptic weights in an attractor network after learning for a subsequent retrieval phase, or for applying
reward learning (Berthet et al., 2012). In a fixed step size simulation, where all states correspond to the
same global time, the change of the learning rate can be easily implemented by just modifying parameter
κ at the right time step.

The case is more complicated for event-driven simulations, where the states correspond to the time of
their last update, which usually differs from synapse to synapse. Hence, when the learning rate changes at
a discrete time t from κ to κ′ the following applies to any event-based simulation: First, all state variables
have to be updated to the current time t. Then all coefficients that involve κ have to be re-computed
according to κ′, in particular τ∗p . For κ′ > 0 the event-based updating can then continue as before.

The analytical II method requires an additional step: As the P traces undergo a continuous evolution
whenever κ changes, the P ∗ traces must be transformed before continuing with the new coefficients given
by τ∗p

′ = τp
κ′ . Hence, the following relation must hold, cf. eq. (46):

λziZ
∗
i + λeiE

∗
i + λpiP

∗
i = λ′ziZ

∗
i + λ′eiE

∗
i + λ′piP

∗
i
′ , (A11)

where the primed variables correspond to the representation with κ′. By solving eq. (A11), the new P ∗i
′ is

computed as:

P ∗i
′ =

1

λ′pi

[
(λzi − λ′zi)Z∗i + (λei − λ′ei)E∗i + λpiP

∗
i

]
(A12)

Similarly, the new P ∗ij
′ value is given from the old values of Z∗i , Z

∗
j , E

∗
ij and P ∗ij :

P ∗ij
′ =

1

λ′pij

[
(λzij − λ′zij)Z∗i Z∗j + (λeij − λ′eij)E∗ij + λpijP

∗
ij

]
(A13)

Special case κ = 0 When κ = 0, P ∗i is used to directly store the Pi value, such that the coefficients for
the new state variables turn into λzi = 0, λei = 0, λpi = 1. The same applies to the synaptic coefficients
λzij = 0, λeij = 0, λpij = 1. The transformation of the P ∗ traces when κ switches between 0 and non-
zero value again follows eqs. (A12) and (A13). Of course, while κ = 0, the P -traces, respectively the
P ∗-traces, remain constant and are not affected by any arriving spikes.

A.4 COMPARISON OF SIMULATION STRATEGIES WITH 0.1 MS TIME STEP

Figure A1 shows the same speed comparison measurements between the different update strategies as in
Figure 4, but now using a 0.1 ms time discretization. This means that the fixed time step simulation with
explicit Euler now runs with dt = 0.1 ms. Also the event-based simulations are affected, as the spike times
are now distributed over a finer time grid. Furthermore, the calculation of the HCU state variables and the
postsynaptic biases βj is done in every time step and thus ten times more often (cf. section 2.4.1).

While the fixed step size simulation with explicit Euler is approximately ten times slower than with dt =
1 ms, the event-based methods are only barely affected from the finer discretization, e.g. the simulation
of analytical II method at 1 Hz takes only twice as long as before, but is still faster than real time. The
speedup compared to the Euler method (Figure A1B) however is much higher now.
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Figure A1. Speed comparison of different simulation strategies for spike-based BCPNN with 0.1ms time discretization: fixed step size simulation with
explicit Euler method with 0.1ms time step (Euler, black curve), event-driven simulation with analytical update (analytical I, cf. section 2.3.1, blue) and
analytical update with exponential state variables (analytical II, cf. section 2.3.3), with and without using look-up tables (LUTs) for the exponential function
(red, resp. green). (A) Execution time for simulating a full hypercolumn unit with 1 million BCPNN synapses for one second with different Poisson firing
rates applied to both pre- and postsynaptic units of the HCU (cf. Figure 2). (B) Speedup of event-based simulation methods with respect to the fixed step size
simulation with Euler method in A. Look-up tables were implemented for the exponential decay of type exp(−∆t

τ
) for the time constants τzi , τzj , τe, τ

∗
p .

Each LUT had 10 000 entries in steps of 0.1ms.
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