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1 PROOF OF PROPOSITION 1

PROPOSITION 1 (Proof in Appendix 1). If the projection matrix in Problem 1 is shared between tokens
in each field, the optimal solution of Problem 1 can be constructed from one solution to Problem 2.

PROOF. We prove this statement by construction. We first prove it for the case that there is only one
field. Since the projection matrix is shared between tokens in the field, from the definition of V̂, we have
∀i, V̂i,: = Pv̂′

i. We note that this is equivalent to V̂ = V̂′P, where V̂′ ∈ Rn×d is the sparse matrix obtained
by stacking the padded embedding vectors v̂′

i, i.e., ∀i, V̂′
i,: = v̂′

i.

Suppose an optimal solution to Problem 1 is d∗, V̂∗, Θ∗, and the projection matrix to this field is P∗,
where V̂∗ = V̂′∗P∗. To prove d∗, V̂∗, Θ∗ lies in the search space of Problem 2, we need to show there
exists a C, V, and Θ, such that (i) L(V̂∗,Θ∗;D) = L(V ⊙C,Θ;D); (ii) C satisfies the sparse constraint
in Equation (7).

We can construct a specific V and C in Equation (6) to satisfy V⊙C = V̂′∗. The gate in the constructed
C is set as “off” if its corresponding parameter in V̂′∗ is a padding zero, and set as “on” for other parameters.
For the constructed C, we have:

||C||0 =
∑

d∗ =
n∑

i=1

d∗i (S1)

Since d∗ is a solution to Problem 1, we have
∑n

i=1 d
∗
i ≤ k. Thus, the constructed C meets the sparse

constraint in Equation (7). Note that V⊙C = V̂′∗ ̸= V̂∗, we will show L(V̂∗,Θ∗;D) = L(V⊙C,Θ;D)
by constructing a specific Θ in the next step.

We have V̂∗ = V̂′∗P∗ and V ⊙ C = V̂′∗. In problem 1, the projection operation specified by P∗

is implemented as adding a linear layer to the transform the retrieved embeddings of this field, where
the weight of this linear layer equals P∗. Similarly, for the model in Problem 2, we can construct the
corresponding linear layer for this field by setting its weights as P∗. Consequently, by setting Θ = P∗∪Θ∗,
we have L(V̂∗,Θ∗;D) = L(V ⊙C,Θ;D). Thus, we prove the statement for the case where there is only
one field. If there are multiple fields, suppose the projection matrix for mth field is P∗

m, then we can obtain
the same result by constructing a linear layer for each field, where the weight matrix is set as P∗

m.

2 DETAILS FOR SECTION 3.4

2.1 NAS-based Formulation and Pruning-based Formulation

Most of the previous multi-size embedding work formulates the size allocation problem as an architecture
selection problem. Consequently, following the paradigm of NAS, the validation data is used to select the
size. The main reason to use validation data is to prevent the trivial solution. Namely, if the training data is
used to select the size, all tokens may be allocated with maximal available sizes since using all parameters
may have the lowest training loss. However, it has been reported in previous paper that this statement may
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not true for size allocation problem Liu et al. (2021). In Liu et al. (2021), the authors found that the training
loss can be further minimized if some unimportant tokens are allocated with less capacity.

In contrast, we formulate this size allocation problem as a pruning problem. That is to identify parameters
least degrade model performance on the training data if removed. In our framework, the customized
embedding sizes are searched merely on the training data. However, our multi-size embedding table with
customized sizes generalizes well and can even outperform the performance with full embedding table,
which is experimentally verified.

Also, NAS based multi-size embedding work has another practical drawback when applying it.
Specifically, NAS based formulation requires the data to be divided into the training set and validation set
during the search process. However, in recommendation domain, the distribution of tokens is extremely
sparse. Some tokens might only appear in the validation set while absent in the training set, and vice versa.
Consequently, if a token does not present in the validation set, then NAS based methods may allocate a
smallest available size to it, since the token has no relationship with the validation loss. Thus, the splitting
may largely influence the searched sizes of NAS based methods.

2.2 Details about Retrieving Embeddings

In most of the previous multi-size embedding work, there are several projection matrices constructed for
each field, where tokens with same allocated sizes share a common projection matrix in each field. For
embeddings of equal length but belonging to different fields, retrieving them simultaneously is inflexible
due to the following reason. To recover the original order of input tokens in a mini-batch, the reorder
operation requires the retrieved embeddings to be in equal length for storing in fixed-size containers, such
as Tensor or Matrix. However, each projection operation corresponds to a particular size in a specific field,
and hence cannot be directly applied to the retrieved embeddings. One flexible solution in previous work is
to retrieve embeddings from different field separately. Then apply size-specific projection for retrieved
embeddings in each field. However, this approach will significantly slow down the retrieval process.

In contrast, PME constructs only one projection matrix for each field. In particular,embeddings with
different sizes are padded to equal length with zeros, enabling the feasible adoption of the field-specific
projections. The above padding and retrieving process can be efficiently executed in parallel.

3 DETAILED EXPERIMENTAL SETTINGS

3.1 The Details of Two Benchmark Datasets

In this section, we will introduce the two applied datasets. Table S1 summaries the basic statistics of two
datasets.

Table S1. Statistics of Datasets

Dataset # Samples # Numerical
Feature Fields

# Categorical
Feature Fields

Total
Cardinality

Criteo 45,840,617 13 26 998,960
Avazu 40,428,967 0 23 1,544,488

• Criteo is a benchmark dataset for evaluating click-through rate prediction tasks (CTR). It contains 45
million users’ click records on displayed advertisements.
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• Avazu is a benchmark dataset for the CTR prediction task. This dataset contains users’ mobile behaviors
including whether a displayed mobile advertisement is clicked by a user or not.

3.2 Details about Recommendation Models

The details of the architectures and training hyperparameters of three backbone recommendation models
are listed as following:

• DeepFM Guo et al. (2017) : a two-tower model composed of a three-layer multi-layer perceptrons
(MLP) with 400 hidden units in each layer and factorization machine block, the embedding layers are
shared between the two components, and the output of the two components are linearly embedded
with sigmoid transformation as the final prediction

• Autoint+ Song et al. (2019) : a two-tower model composed of a three-layer MLP with 400 hidden units
in each layer and three-layer self-interaction layer, which adopts the self-attention schema to learn
feature interactions. Within each interaction layer, we follow the default configurations reported in
Song et al. (2019), except for setting the number of hidden units to 64 instead of 32. The outputs of the
two components are linearly embedded with sigmoid transformation into the final prediction.

• Wide & Deep Pan et al. (2020) : a two-tower model conposed of a two-layer MLP (the deep part),
which has the architecture of 256-128 first-to-last hidden layer sizes, and a linear model (the wide
part). The outputs of the two components are linearly embedded with sigmoid transformation into the
final prediction. We do not follow the official implementation where the two parts are optimized by
different optimizers. For convenience, we use a shared ADAM optimizer Kingma and Ba (2015) for
both the deep and wide part.

For all three models, they are trained with learning rate of 1e− 3, batch size of 4096, dropout rate of 0.5,
and the Adam optimizer. For the MLP in these three models, ReLU is used as activation functions and the
Batch Normalization is adopted. We do not add any other regularizations excluding Wide & Deep. For
Wide & Deep, a 1e− 5 L2 regularization is applied.

3.3 Baselines Hyperparameter Settings

For SE, we set the fixed embedding size as 1, 8, and 32. For MDE, the baseline dimension is set to 32.
The temperature α is set to 0.2, 0.3 and 0.4. For QREMB, as suggested in Shi et al. (2020), we use the
multiplication operation to combine compositional embeddings. The hash collisions is set to 7, 20, and
40. For LRF, the rank r is set to 2, 3, and 5. Since DartsEMB cannot explicitly control the total number
of parameters in the multi-size embedding table, for DartsEMB, the candidate embedding space is set to
{1, 2, 8}, {2, 4, 16}, and {4, 8, 32} to meet different compression rates.
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