
Supplementary Methods
MCTS Implementation

MCTS has four phases: selection, expansion, rollout, and backpropagation. During selection,
MCTS recursively descends the search tree, choosing the child branch with the highest upper
confidence bound (UCT), the calculation of which is described below. Upon reaching a leaf
node, MCTS expands the leaf by creating a new child model for all possible interactions that
can be added to the model corresponding to the leaf of the search tree.

These possible interactions are pulled from a list we call the action list. After expanding the rule
set of a child node with a new interaction, we remove all conflicting inhibiting and activating
interactions from the interaction list of the child. This prevents a source species from both
activating and inhibiting a single target species in the model. Users can apply more complex
manipulations to the list of possible interactions to inject their prior knowledge of the system.
For example, one could restrict possible interactions to only those in a database of
transcription factor and gene pairs or from results of a tandem affinity purification experiment.
Further, one could limit the number of interactions that a species participates in by removing all
interactions from the action list that include the given species once a limit is reached. Each
possible interaction has a prior probability of being selected. These priors could be manually
specified to bias the search towards more biologically plausible interactions. The priors are
multiplied against the random probabilities that are sampled during selection and random
rollouts.

After selecting and then expanding a leaf node, MCTS performs a random rollout. This consists
of randomly adding interactions to the model, stopping when a special "stop" action is chosen
from the interaction list. The "stop" action has a manually chosen prior probability that can be
varied to lengthen or shorten random rollouts. After stopping, the resulting model is simulated
and scored for similarity. The purpose of the random rollout is to provide a stochastic estimate
of the best similarity that can be achieved by models expanded from a given branch of the
search tree.

This estimate is improved through the backpropagation process. Each node in the search tree
maintains two statistics: number of visits ($N_v$) and best similarity ($D^*$). $N_v$ is the
number of times the selection step has chosen a branch containing the given node. After
simulating and scoring a rollout, MCTS ascends the search tree from the leaf towards the root.
At each node in this path, we increment the number of visits, $N_v$. If the similarity of the
rollout $\mathcal{D}$ is greater than $D^*$ then we set $D^* \coloneqq \mathcal{D}$. These
statistics are used to calculate the upper confidence bound, which guides the selection
process.
$$



\text{UCT} = \mathcal{D}^{*} + c\sqrt{\frac{\ln{N_v(n_i)}}{N_v(n_j)}}
$$
where $N(n_i)$ is the number of visits of the current node $n_i$ and its child node $n_j$. $c$ is
an exploration constant. The exploration constant is a hyperparameter that balances
exploration vs exploitation in the search. We use an exploration constant that decays as the
search progresses, favoring early diversity in the search but exploitation of good branches at
later iterations.

One cycle of selection, expansion, rollout and backpropagation constitutes an iteration of the
algorithm. The user can choose a fixed number of iterations or a time limit at which to halt the
search. Once this limit is reached, the selection procedure is run from the root node of the
search tree, effectively choosing the branch that yielded the best models. We then restart the
search after adding the selected interaction to a base model. By frequently taking a step and
restarting the search with a model that already contains good interactions, we allow the search
to efficiently probe deeper into the search space, following branches that yield good results.

At each rollout we persist the generated model to storage along with its similarity score. Thus,
the MCTS algorithm is "anytime", i.e. it returns valid (but not necessarily perfect) models
immediately. We parallelize the search by simply running the search on parallel processes with
no communication. This means that each process constructs a search tree independently. This
prevents information sharing between search processes and introduces potential redundancy
in the individual searches and simulations. This loss of performance is balanced by the
reduction of communication and synchronization overhead in maintaining consistency in a
shared search tree, while also allowing for greater diversity in the individual search processes.

MCTS Enhancements
Rapid Action Value Estimation (RAVE)

In standard MCTS, the estimated best value of a given node (i.e. adding a specific interaction
to the Boolean model) is computed by backpropagating similarity scores from all random
rollouts below that node in the search tree. Thus, the node's value estimate is limited to rollouts
from its branch of the tree. However, other branches of the search tree may include the same
action. Rollouts from the other branches could provide some amount of information about the
value of the action on other branches. This is the motivating insight of RAVE. RAVE maintains a
list of actions with their number of visits and best values, accumulated across all branches.
During selection, a node's value is calculated as a weighted average of the RAVE value and the
standard (branch specific) value.



Here, D* is the branch-specific value, Drave is the accumulated RAVE value, and D̂ is the
weighted average. The weighting factor β is a heuristically determined function of the number
of visits to search tree node ni and a parameter k that determines the number of visits when D*
and Drave are weighted equally:

The weighted average is then substituted into the UCB calculation during selection:

Nested Search
In standard MCTS, after reaching the iteration limit, we add the best interaction to our model
and restart the search process. As a result, information from the previous search steps is lost.
We remedy this by retaining the sequence of actions taken by the rollout with the highest
reward. If any subsequent search steps fail to find a rollout with higher similarity, then we take
the next action from the previous best rollout sequence. This technique is known as nested
MCTS.

Branch Retention
As explained above, nested search allows MCTS to retain information from previous search
steps about the best sequence of actions. However, the statistics stored at each node of the
tree are lost at each step. We can retain the search statistics for the branch chosen at each
step, an option we refer to as "branch retention".

Supplementary Table S1 - Number of attractors in randomly sampled models

Supplementary Table S2 - Active/Inactive ratio of attractors from sampled
models



Supplementary Table S3 - Segment Polarity Network Reference Rules

Supplementary Table S4 - Wild Type and Knockout Initial and Attractor States

Wild type attractors



Wild Type Initial State

Knockout Experiment Attractor (en, hh, wg knockout)



Supplementary Figure S1 - Base model used in MC-Boomer search




