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Supplementary Methods 4 

S1. Model implementation  5 

Component 1. The first component of the model was made of a layer of units reminiscent of cortical 6 

simple cells and modelled using Gabor functions. The profile of the Gabor functions were in all 7 

identical as the ones presented in (Serre and Riesenhuber 2004, Serre, Oliva et al. 2007). We 8 

considered four regularly spaced orientations (0º, 45º, 90º and 135º) and eight ‘subpopulations’ 9 

(frequency channels) of the model corresponding to cells sensitive to different spatial scales with 10 

receptive fields of sizes Rfsize = [5,7,9,13,17,21,25,31,37,43,49,55]. Each receptive field included 11 

approximatively δ =  3 cycles. The spatial frequencies of the eight spatial scales were, respectively, 12 

ScFr =  [10.8,7.7, 6,4.1,3.2,2.6,2.2,1.7,1.5,1.3,1.1,1] cycles per degree (cpd) in the viewing 13 

conditions of the experiment (see below, Section Correspondence between frequency channel in the 14 

model and visual angle in the experiment, for a derivation). Please note that it only applied to the 15 

sets of stimuli Architecture 1 and 2 and not to Art 1 and 2 as the latter sets were rated online, with 16 

no control of the viewing conditions. Each filter was applied at each position in the image. As the 17 

sampling was dense, we did not consider different phases for the units. The number of units in each 18 

subpopulation sensitive to a given orientation and spatial frequency was the same for the 12 19 

frequency channels. The Gabor filters were normalized so that the sum of their values was 0 and 20 

that of the square of their values was 1. 21 

  22 

Model ‘component 2’. The second component of the model is a firing-rate excitatory-inhibitory 23 

network made of a population of excitatory cells with membrane potentials (𝑥𝑖𝑠𝜃) and inhibitory 24 

cells with membrane potentials (𝑦𝑖𝑠𝜃) organized into a regular grid of hypercolumns of size 256 x 25 

256, i.e., one hypercolumn for each pixel in the input images, where each excitatory or inhibitory 26 

unit is characterised by a triple [𝑖, 𝑠, 𝜃], with 𝑖 being the location of the hypercolumn it belongs to 27 

and the centre of the receptive field of the unit, 𝑠 refers to one of the eight subpopulations of the 28 

model sensitive to different spatial frequencies, and 𝜃 is the preferred orientation of the unit. Pairs 29 

of excitatory units in the network, 𝑥𝑖𝑠𝜃  and 𝑥𝑗𝑠′𝜃′, are connected through lateral connections of 30 

strength 𝐽[𝑖𝑠𝜃,𝑗𝑠′𝜃′] set up to enhance ‘collinear activation’ of roughly aligned features, namely to 31 

boost the mutual reinforcement of the activity of cells whose respective locations and relative 32 

orientations may respond to a typical contour in natural scenes (Knierim and Vanessen 1992, 33 

Kapadia, Ito et al. 1995, Weliky, Kandler et al. 1995). Pairs of inhibitory and excitatory units, 𝑦𝑖𝑠𝜃  and 34 
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𝑥𝑗𝑠′𝜃′, are connected through lateral connections of strength 𝑊[𝑖𝑠𝜃,𝑗𝑠′𝜃′] set up to mutually inhibit 35 

the activity of cells sensitive to edges that are roughly parallel through disynaptic connections (see 36 

(Li 1999, Penacchio, Otazu et al. 2013) for a schematic of the patterns of connections 𝐽 and 𝑊). The 37 

firing rates of the excitatory and inhibitory units are given by the output of non-linear monotonic 38 

increasing activation functions 𝑥𝑖𝑠𝜃 → 𝑔𝑥(𝑥𝑖𝑠𝜃) and 𝑦𝑖𝑠𝜃 → 𝑔𝑦(𝑦𝑖𝑠𝜃), respectively. 39 

The dynamic of the network is driven by the following differential equations 40 

{
 
 
 

 
 
 
𝑑𝑥𝑖𝑠𝜃
𝑑𝑡

=  −𝛼𝑥𝑥𝑖𝑠𝜃 − 𝑔𝑦(𝑦𝑖𝑠𝜃) − ∑ 𝜓(Δ𝑠, Δ𝜃)𝑔𝑦(𝑦𝑖𝑠+Δ𝑠𝜃+Δ𝜃)

Δ𝑠,∆𝜃≠0

+ 𝐽0𝑔𝑥(𝑥𝑖𝑠𝜃)

+ ∑ 𝐽[𝑖𝑠𝜃,𝑗𝑠′𝜃′]𝑔𝑥(𝑥𝑗𝑠′𝜃′)

𝑗≠𝑖,𝑠′,𝜃′

+ 𝐼𝑖𝑠𝜃 + 𝐼0,

𝑑𝑦𝑖𝑠𝜃
𝑑𝑡

=  −𝛼𝑦𝑦𝑖𝑠𝜃 + 𝑔𝑥(𝑥𝑖𝑠𝜃) + ∑ 𝑊[𝑖𝑠𝜃,𝑗𝑠′𝜃′]𝑔𝑥(𝑥𝑗𝑠′𝜃′)

𝑗≠𝑖,𝑠′,𝜃′

+ 𝐼𝑐 ,                        

 41 

where  42 

▪ 𝛼𝑥 and 𝛼𝑦 are constant that control the temporal reactivity of the network; 43 

▪ 𝜓 is a function that implements inhibition between cells sensitive to similar orientations 44 

within each hypercolumn; 45 

▪ 𝐽0 models self-excitatory activity; 46 

▪ 𝐼0 is a normalization term; 47 

▪ 𝐼𝑐 describes the background input to the inhibitory layer; 48 

▪ 𝐼𝑖𝑠𝜃 is the (constant for each image processed) visual input to the network given by the 49 

output of the units that make ‘component 1’. 50 

The values of the parameters of the network have not been fitted for this work and are in all 51 

identical to those described in previous works (see (Li 1999), and (Penacchio, Otazu et al. 2013), 52 

Supporting Information, for a full description of all the parameters).    53 

 54 

Modification of the excitation/inhibition balance. The ratio of excitation to inhibition in the model 55 

was first manipulated by modifying the activation functions of the inhibitory layer of the model 56 

𝑦 → 𝑔𝑦(𝑦) using a multiplicative gain 𝛾, as  57 

𝑦 → 𝛾𝑔𝑦(𝑦). 58 

 59 

The gain varied between 0 (no inhibition at all in the network) to 1 (the reference model). 60 

 61 

Correspondence between frequency channel in the model and visual angle in the experiment. 62 

(Please note that this correspondence only applies for the stimuli rated in the laboratory, i.e., for the 63 
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results relative to the sets Architecture 1 and 2). The peak frequency, in cycles per image, for a 64 

receptive field of size RFsize consisting of 𝛿 cycles, is 65 

𝑁𝛿/𝑅𝑓𝑠𝑖𝑧𝑒 66 

for a square image of size 𝑁 pixels. The peak frequency of a receptive field in the experimental 67 

conditions, in cycles per degree (cpd), is therefore 68 

𝑁𝛿/(𝑅𝑓𝑠𝑖𝑧𝑒𝜃), 69 

where 𝜃 is the visual angle of the image in the experiment. The peak frequencies of the units in the 70 

model were therefore ScFr =  [10.8,7.7, 6,4.1,3.2,2.6,2.2,1.7,1.5,1.3,1.1,1], hence ranging between 71 

1 cpd (biggest receptive fields, size 55x55 pixels) and 10.8 cpd (smallest receptive fields, size 5x5 72 

pixels), with an average of 3.5 cpd, in fair agreement with electrophysiological recordings (e.g., 0.5 73 

to 8 cpd, average 2.2 cpd in (Devalois, Albrecht et al. 1982)). Note that the spatial frequencies we 74 

considered were not exactly logarithmically spaced. A proper logarithmic spacing with the same 75 

number of channels (12) and with spatial frequencies ranging between 1 cpd and 10.8 cpd would 76 

have led to spatial frequencies of [1.0000, 1.24, 1.54, 1.91, 2.38, 2.95, 3.66, 4.55, 5.64, 7.00, 8.70, 77 

10.8], which would have provided a spatial frequency sampling very similar to the one chosen. 78 

 79 

S2. Non-classical receptive field stimulation increases the sparseness of the model 80 

response 81 

The excitatory-inhibitory neurodynamical model used in this work has been shown to reproduce 82 

several phenomena that take place, at least in part, in the early visual cortex, namely figure-ground 83 

segmentation, contour grouping and bottom-up saliency (Zhaoping and May 2007, Zhang, Zhaoping 84 

et al. 2012, Zhaoping and Zhe 2015, Berga and Otazu 2020, Berga and Otazu 2022), with a good fit 85 

with behavioural experiment and neuroimaging data (Zhang, Zhaoping et al. 2012, Zhaoping and Zhe 86 

2015), and, qualitatively, brightness induction (Penacchio, Otazu et al. 2013).  87 

Stimulating simultaneously the classical receptive field (CRF) and the nonclassical receptive field 88 

(nCRF) of a cortical visual neuron with naturalistic stimuli increases the sparseness of the neuron 89 

response (Vinje and Gallant 2000, Haider, Krause et al. 2010). To test whether the stimulation of 90 

regions contiguous to the CRF had an influence on the sparseness of the response of the model, we 91 

analysed how the sparseness of the activity of a central set of units evolved when the stimulation 92 

area was increased from a small region to a wide region. The restriction of the stimulation area was 93 

done by applying to all the images in Set 4 circular masks with different radii and centred at the 94 

same location (corresponding to a reference hypercolumn located at the centre of the image) (Vinje 95 

and Gallant 2000). To reduce border effects, the masks were smoothed beforehand using a Gaussian 96 

kernel (σ =1/2 pixel). The effect of the mask on an image was to set to zero all the pixel values 97 
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outside of the circular area within which the mask had positive values. The radius of the circular 98 

stimulation area ranged from 3.5 pixels (corresponding approximatively to the size of the smaller 99 

CRF, namely those of the units sensitive to the highest spatial frequencies) to 53.5 pixels in steps of 2 100 

(3.5 to 17.5) then 4 (17.5 to 53.5), resulting in 17 different masks. The activity of the model was 101 

therefore computed for 74 (number of images in Set 4) x 17 (number of masks) = 1258 different 102 

input images.  103 

For each of the 4 (orientations in each hypercolumn) x 8 (scales in each hypercolumns) = 32 units in 104 

the central hypercolumn and for each radius size, we obtained a distribution of response activity by 105 

concatenating the firing rates for the 74 images and the membrane time constants once the steady 106 

state was reached (i.e., between the 5th and the 20th membrane time constants, see main text). We 107 

next analysed the lifetime sparseness of all the 32 units separately by computing the kurtosis of the 108 

corresponding distribution of firing rates for each unit (figure S1a). We also analysed the population 109 

sparseness of the population made by all the units in the reference hypercolumn by concatenating 110 

all the distributions of firing rates of the individual units (figure S1b).  111 

Figure S1a shows that the median lifetime sparseness of the individual responses of the units 112 

strongly increased when extending the area of visual stimulation. Increasing the diameter of the 113 

stimulation from the smallest value (radius = 3.5) to twice this value (radius = 7.5), two and a half 114 

times  this value (radius = 9.5) and four times this value (radius = 15.5) resulted in significantly 115 

different kurtosis distributions (Kolmogorov-Smirnov test:  D(radius = 3.5, radius = 7.5) = 0.27, p < 116 

0.05; D(radius = 3.5, radius = 9.5) = 0.437, p < 10-4; D(radius = 3.5, radius = 15.5) = 0.604, p < 10-7). 117 

There was no significant increase in lifetime sparseness when the stimulation region was further 118 

enlarged (e.g., the difference between stimulating an area of radius 17.5 and stimulating an area of 119 

radius 53.5 was not significant, Kolmogorov-Smirnov statistic D(radius = 17.5, radius = 53.5) = 0.187, 120 

p = 0.33; none of the differences between pairs of distributions for a radius beyond 17.5 was 121 

significant, all p > 0.139).  122 

Figure S1b shows that the sparseness of the whole population also increased dramatically when 123 

increasing the radius of the stimulation until the stimulation area reached the size of 5-6 receptive 124 

fields of the units tuned to the highest spatial frequency. Taken together, these results show that the 125 

model replicates the findings that stimulating the nCRF of a cortical visual neuron in addition to its 126 

CRF with naturalistic stimuli increases the sparseness of its response (Vinje and Gallant 2000, Haider, 127 

Krause et al. 2010). 128 
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 129 

Figure S1. Increasing the area of stimulation increases lifetime sparseness of individual units and population sparseness. 130 

(a) Distributions of lifetime sparseness for 32 units (4 orientations, 8 spatial frequencies) located at the centre of the 131 

retinotopic grid in function of the radius of the stimulation area. The notch boxes show 95% confidence interval of the 132 

median, the interquartile range (IQR) and the lower (resp. upper) whisker show the 25 percentile (resp. 75 percentile) 133 

minus 1.5 IQR (resp. plus 1.5 IQR). (b) Sparseness of the whole population (the 32 central units considered together) as a 134 

function of the radius of the stimulation area. 135 

S3. Alternative metrics 136 

We assessed alternative measures for two of the three types of makers, namely activation and 137 

sparseness.  138 

For activation, we also measured the 𝐿0.5, 𝐿1.5, 𝐿2, 𝐿2.7-norm of the model population response as 139 

‖(𝑥𝑖𝑠𝜃(𝑡))‖𝑝 = (∑ |𝑥𝑖𝑠𝜃(𝑡)|
𝑝)1 𝑝⁄

𝑖,𝜃,𝑠,𝑡 , with 𝑝 =  0.5, 1.5, 2 and 2.7 and the standard deviation of 140 

the model population response. We found strong correlations between these alternative measures 141 

of activation and the measure used in the text (𝐿1), and very similar correlations with observers’ 142 

ratings of discomfort (see Figures S2-S5 below). 143 

For sparseness, we also measured the kurtosis of the model population response (Hibbard and 144 

O'Hare 2015), its Gini index (Hurley and Rickard 2009), and the rate parameter obtained when fitting 145 

exponential distributions to the distribution of firing rates (“exponential decay”, see (Baddeley, 146 

Abbott et al. 1997)). We found relatively good correlations between most of these measures, with 147 

relatively similar prediction of observers’ ratings of discomfort for the set Architecture 1 and 2, apart 148 

from the measure provided by the Gini index (see Figure S2-S5 below).  149 
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 150 
Figure S2. Correlation between the three markers of discomfort used in the manuscript (activation, "𝐋𝟏"; sparseness " −151 
∑ 𝐭𝐚𝐧𝐡 𝐱𝟐 "; isotropy, “𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐲”) and the alternative measures for set Architecture 1 (N=75). Colours provide the 152 
Pearson correlation coefficient between two measures, or a measures and observers’ average reported discomfort, with 153 
dark blue corresponding to a perfect correlation and dark red to a perfect anticorrelation. Blank entries correspond to 154 
non-significant correlations at the 0.05 level.  155 
 156 

 157 
Figure S3. Correlation between the three markers of discomfort used in the manuscript (activation, "𝐋𝟏"; sparseness " −158 
∑ 𝐭𝐚𝐧𝐡 𝐱𝟐 "; isotropy, “𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐲”) and the alternative measures for set Architecture 2 (N=75). All conventions as in 159 
Figure S2. 160 

 161 
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 162 
Figure S4. Correlation between the three markers of discomfort used in the manuscript (activation, "𝐋𝟏"; sparseness " −163 
∑ 𝐭𝐚𝐧𝐡 𝐱𝟐 "; isotropy, “𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐲”) and the alternative measures for set Art 1 (N=50). All conventions as in Figure S2. 164 
  165 
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 166 
Figure S5. Correlation between the three markers of discomfort used in the manuscript (activation, "𝐋𝟏"; sparseness " −167 
∑ 𝐭𝐚𝐧𝐡 𝐱𝟐 "; isotropy, “𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐲”) and the alternative measures for set Art 2 (N=50). All conventions as in Figure S2. 168 
  169 
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Supplementary results 170 

S4. Statistical inference 171 

Experiment 1 172 

Models used in the inference process for Experiment 1. In each case, the model chosen is highlighted 173 

in grey. 174 

 POPULATION ACTIVITY LEVEL (E) regressed against reported discomfort in set: 175 

ARCHITECTURE 1 176 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 2703 2717 -1349    

modE modNull + E  2645 2664 -1319 1 60.23 < 10-14 

modErs modE  + E 2602 2630 -1295 2 46.93 < 10-10 

Model selected modErs: rating ~ E + (E|subject) 177 

Fixed effects   

Estimate SE t-value 

Intercept 3.71 0.23 16.28 

E 0.84 0.29 2.90 

 178 

Random effects  

Variance SD 

Subject 0.49 0.70 

E 0.74 0.86 

Model fit: R2 (marginal) 0.066; R2 (conditional) 0.321 179 

 180 

ARCHITECTURE 2 181 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 2799 2812 -1396    

modE modNull + E  2664 2682 -1328 1 136.61 < 10-15 

modErs modE  + E 2647 2675 -1318 2 20.79 < 10-4 

Model selected modErs: rating ~ E + (E|subject) 182 

Fixed effects   

Estimate SE t-value 

Intercept 3.39 0.15 22.58 

E 1.30 0.22 6.04 

 183 

Random effects  

Variance SD 
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Subject 0.20 0.45 

E 0.36 0.60 

Model fit: R2 (marginal) 0.159; R2 (conditional) 0.266 184 

ART 1 185 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 6359 6377 -3177    

modE modNull + E  6327 6350 -3159 1 34.32 < 10-8 

modErs modE  + E 6266 6302 -3127 2 64.40 < 10-13 

Model selected modErs: rating ~ E + (E|subject) 186 

Fixed effects   

Estimate SE t-value 

Intercept 1.59 0.7 22.32 

E 0.19 0.05 3.54 

 187 

Random effects  

Variance SD 

Subject 0.26 0.51 

E 0.11 0.33 

Model fit: R2 (marginal) 0.010; R2 (conditional) 0.340 188 

 189 

ART 2 190 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 9897 9916 -4945    

modE modNull + E  9846 9871 -4919 1 52.60 < 10-12 

modErs modE  + E 9824 9862 -4906 2 25.68 < 10-5 

Model selected modErs: rating ~ E + (E|subject) 191 

Fixed effects   

Estimate SE t-value 

Intercept 1.72 0.06 26.78 

E 0.20 0.04 5.77 

 192 

Random effects  

Variance SD 

Subject 0.31 0.56 

E 0.04 0.20 

Model fit: R2 (marginal) 0.010; R2 (conditional) 0.337 193 

 194 
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 SPARSENESS OF MODEL RESPONSE (S) regressed against reported discomfort in set: 195 

ARCHITECTURE 1 196 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 2703 2717 -1349    

modS modNull + S  2649 2668 -1321 1 56.05 < 10-13 

modSrs modS  + S 2637 2665 -1313 2 16.11 < 10-4 

Model selected modSrs: rating ~ S + (S|subject) 197 

Fixed effects   

Estimate SE t-value 

Intercept 3.71 0.23 16.28 

S -0.81 0.21 -3.87 

 198 

Random effects  

Variance SD 

Subject 0.49 0.70 

S 0.34 1.38 

Model fit: R2 (marginal) 0.062; R2 (conditional) 0.279 199 

 200 

ARCHITECTURE 2 201 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 2799 2812 -1396    

modS modNull + S  2682 2700 -1337 1 118.93 < 10-15 

modSrs modS  + S 2671 2698 -1329 2 14.90 < 10-4 

Model selected modSrs: rating ~ S + (S|subject) 202 

Fixed effects   

Estimate SE t-value 

Intercept 3.39 0.15 22.58 

S -1.23 0.19 -6.54 

 203 

Random effects  

Variance SD 

Subject 0.20 0.44 

S 0.24 0.49 

Model fit: R2 (marginal) 0.140; R2 (conditional) 0.236 204 

ART 1 205 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 
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Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 6359 6377 -3177    

modS modNull + S  6329 6353 -3161 1 31.90 < 10-7 

modSrs modS  + S 6288 6323 -3138 2 45.16 < 10-9 

Model selected modSrs: rating ~ S + (S|subject) 206 

Fixed effects   

Estimate SE t-value 

Intercept 1.59 0.07 22.32 

S -0.18 0.05 -3.67 

 207 

Random effects  

Variance SD 

Subject 0.26 0.51 

S 0.09 0.29 

Model fit: R2 (marginal) 0.010; R2 (conditional) 0.333 208 

 209 

ART 2 210 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 9897 9916 -4945    

modS modNull + S  9874 9899 -4933 1 24.74 < 10-6 

modSrs modS  + S 9860 9898 -4924 2 17.92 < 10-4 

Model selected modSrs: rating ~ S + (S|subject) 211 

Fixed effects   

Estimate SE t-value 

Intercept 1.72 0.06 26.78 

S -0.14 0.03 -4.38 

 212 

Random effects  

Variance SD 

Subject 0.31 0.56 

S 0.03 0.18 

Model fit: R2 (marginal) 0.005; R2 (conditional) 0.330 213 

 214 

 ANISOTROPY OF MODEL RESPONSE (H) regressed against reported discomfort in set: 215 

ARCHITECTURE 1 216 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 

df χ2 p-value 
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(experimental 
setting) 

modNull   Intercept 2703 2717 -1349    

modH modNull + S  2654 2672 -1323 1 51.33 < 10-12 

modHrs modH  + S 2637 2665 -1313 2 20.87 < 10-4 

Model selected modHrs: rating ~ H + (H|subject) 217 

Fixed effects   

Estimate SE t-value 

Intercept 3.71 0.23 16.28 

H -0.78 0.23 -3.45 

 218 

Random effects  

Variance SD 

Subject 0.49 0.70 

H 0.41 0.64 

Model fit: R2 (marginal) 0.057; R2 (conditional) 0.281 219 

 220 

ARCHITECTURE 2 221 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 2799 2812 -1396    

modH modNull + H  2697 2715 -1344 1 103.93 < 10-15 

modHrs modH  + H 2683 2710 -1335 2 17.83 < 10-4 

Model selected modHrs: rating ~ H + (H|subject) 222 

Fixed effects   

Estimate SE t-value 

Intercept 3.39 0.15 22.58 

S -1.15 0.21 -5.39 

 223 

Random effects  

Variance SD 

Subject 0.20 0.44 

S 0.35 0.59 

Model fit: R2 (marginal) 0.124; R2 (conditional) 0.229 224 

ART 1 225 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 6359 6377 -3177    

modH modNull + H  6362 6385 -3177 1 0.75 0.39 
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Model selected modNull: the level of anisotropy of the model response did not predict visual 226 

discomfort.  227 

ART 2 228 

Model Nested 
Model 

Effects AIC BIC Log 
Likelihood 

Likelihood 
Ratio test 

 

Fixed Random over 
subject 
(experimental 
setting) 

df χ2 p-value 

modNull   Intercept 9897 9916 -4945    

modH modNull + H  9746 9771 -4869 1 152.44 < 10-15 

modHrs modH  + H 9734 9772 -4861 2 16.41 < 10-4 

Model selected modHrs: rating ~ H + (H|subject) 229 

Fixed effects   

Estimate SE t-value 

Intercept 1.72 0.06 26.78 

H 0.33 0.03 10.51 

 230 

Random effects  

Variance SD 

Subject 0.31 0.56 

H 0.02 0.16 

Model fit: R2 (marginal) 0.027; R2 (conditional) 0.350 231 

 232 

S5. Correlations between metrics 233 

S5.1. Raw correlations and scatterplots. The three metrics, model activation level (E), sparseness of 234 

the model response (S), and isotropy in the model response (H), were linearly correlated. The 235 

Pearson correlation coefficients were 𝑟𝐸𝑆 (activation vs. sparseness) = -0.92 (p < 10-15; ci = [-0.95, -236 

0.88]), 𝑟𝐸𝐻  (activation vs. isotropy) = -0.57 (p < 10-7; ci = [-0.71, -0.40]), 𝑟𝑆𝐻  (sparseness vs. isotropy) = 237 

0.59 (p < 10-7; ci = [0.42, 0.72]) for Architecture 1, 𝑟𝐸𝑆 = -0.88 (p < 10-15; ci = [-0.93, -0.82]), 𝑟𝐸𝐻  = -0.72 238 

(p < 10-12; ci = [-0.82, -0.59]), 𝑟𝑆𝐻  = 0.65 (p < 10-9; ci = [0.50, 0.77]) for Architecture 2, 𝑟𝐸𝑆 = -0.86 (p < 239 

10-14; ci = [-0.92, -0.76]), 𝑟𝐸𝐻  = -0.25 (n.s., p = 0.08; ci = [-0.49, 0.03]), 𝑟𝑆𝐻  = 0.65 (p < 10-6; ci = [0.45, 240 

0.78]) for Art 1, and  𝑟𝐸𝑆 = -0.94 (p < 10-15; ci = [-0.97, -0.90]), 𝑟𝐸𝐻  = 0.21 (n.s., p = 0.14; ci = [-0.07, 241 

0.46]), 𝑟𝑆𝐻  = 0.00 (n.s., p = 0.99; ci = [-0.28, 0.28]) for Art 2. Figure SN-SP below show the relationship 242 

between the metrics for the four sets of images. 243 



Page | 15 
 

 244 

Figure S6. Plots of the three metrics, activation, sparseness, and isotropy against each other for the images in Architecture 245 
1.   246 

  247 

Figure S7. Plots of the three metrics, activation, sparseness, and isotropy against each other for the images in Architecture 248 
2.   249 

 250 

Figure S8. Plots of the three metrics, activation, sparseness, and isotropy against each other for the images in Art 1.   251 



Page | 16 
 

 252 

Figure S9. Plots of the three metrics, activation, sparseness, and isotropy against each other for the images in Art 2.   253 

 254 

S5.2. Prediction with all metrics versus a single metric. Considering the correlations between the 255 

metrics, we compared models including the three metrics E, S and H as predictors with models only 256 

containing one metric (counterevidence for using a more complex model highlighted in grey): 257 

Architecture 1 χ2 p ΔAIC ΔBIC 

modErs vs. modESHrs 41.13 < 10-5 -23 18 

modSrs vs. modESHrs 76.13 < 10-12 -58 -17 

modHrs vs. modESHrs 76.09 < 10-12 -58 -17 

 258 

Architecture 2 χ2 p ΔAIC ΔBIC 

modErs vs. modESHrs 20.99 0.013 -3 38 

modSrs vs. modESHrs 44.56 < 10-5 -27 15 

modHrs vs. modESHrs 56.63 < 10-8 -39 3 

 259 

Art 1 χ2 p ΔAIC ΔBIC 

modErs vs. modESHrs 7.64 0.57 10 63 

modSrs vs. modESHrs 29.29 0.00058 -11 42 

modHrs vs. modESHrs 103.78 < 10-15 -86 -33 

 260 

Art 2 χ2 p ΔAIC ΔBIC 

modErs vs. modESHrs 151.89 < 10-15 -134 -77 

modSrs vs. modESHrs 187.5 < 10-15 -169 -113 

modHrs vs. modESHrs 61.32 < 10-9 -43 13 

 261 
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For Art 1 and 2 we reproduced this analysis for the metrics computed from the activity of the 262 

frequency channel that gave the best correlation with observers’ ratings: 263 

Art 1 χ2 p ΔAIC ΔBIC 

modErs vs. modESHrs 46.18 < 10-6 -28 25 

modSrs vs. modESHrs 95.59 < 10-15 -78 -25 

modHrs vs. modESHrs 220.36 < 10-15 -202 -149 

 264 

Art 2 χ2 p ΔAIC ΔBIC 

modErs vs. modESHrs 189.49 < 10-15 -171 -115 

modSrs vs. modESHrs 232.54 < 10-15 -215 -158 

modHrs vs. modESHrs 219.75 < 10-15 -202 -145 

 265 

S5.3. Relationship between activation and sparseness. Given the high correlation between 266 

‘activation’ and ‘sparseness’ we compared models including these two predictors to models 267 

containing only one (same convention as in the tables above):  268 

Architecture 1 χ2 p ΔAIC ΔBIC 

modErs vs. modESrs 23.17 0.00012 -15 3 

modSrs vs. modESrs 58.17 < 10-11 -50 -32 

 269 

Architecture 2 χ2 p ΔAIC ΔBIC 

modErs vs. modESrs 9.24 0.055 -1 17 

modSrs vs. modESrs 32.81 < 10-5 -25 -6 

 270 

Art 1 χ2 p ΔAIC ΔBIC 

modErs vs. modESrs 4.86 0.30 3 27 

modSrs vs. modESrs 26.52 < 10-4 -19 5 

 271 

Art 2 χ2 p ΔAIC ΔBIC 

modErs vs. modESrs 24.14 < 10-4 -16 9 

modSrs vs. modESrs 59.75 < 10-11 -52 -27 

 272 



Page | 18 
 

We also wondered whether it is possible to find population activities for which activation and 273 

sparseness are disentangled. To this end we considered distributions of firing rates modelled using 274 

log-normal distributions. (Log-normal distributions fit well populations of firing rates (Linden and 275 

Berg 2021).) We considered a single population created by joining two subpopulations drawn from 276 

two log-normal distributions with different parameters. By varying the parameters, we found that it 277 

was possible to find whole distributions of firing rates with the same level of activation and very 278 

different levels of sparseness, as shown in Figure S10 below. It is unlikely that our model or actual 279 

neural codes can reach this level of independence between activation and sparseness, but the tables 280 

above show that for two sets of images, Architecture 1 and Art 2, activation and sparseness had 281 

some degree of independence and considering both metrics did increase the amount of explained 282 

variance in discomfort. 283 

 284 

 285 

Figure S10. Three population of firing rate with the same level of activation, but three different levels of sparseness.   286 

   287 

  288 
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 289 

 290 

S6. Impact of excitation/inhibition balance on the three markers for other sets of stimuli 291 

 292 

Figure S11. (Counterpart of Figure 5 in the main text for Architecture 2) Changes in markers of visual discomfort when the 293 
balance of excitation over inhibition is modified. Distributions of (A) activation, (B) sparseness, and (C) isotropy metrics for 294 
all the stimuli in Architecture 2 and increasing values of gain for the inhibitory layer. The gain ranged from 0, i.e., no inhibitory 295 
activity in the model (top left, light grey distribution), to 1, i.e., reference model (top right, blue distribution), in steps of 296 
0.125. Differences between distributions and the distribution for the reference model were tested using two-sample 297 
Kolmogorov-Smirnov tests; p-values are colour coded as in Figure 3 in the main manuscript. 298 
 299 

 300 

Figure S12. (Counterpart of Figure 5 in the main text for Art 1) Changes in markers of visual discomfort when the balance of 301 
excitation over inhibition is modified. Distributions of (A) activation, (B) sparseness, and (C) isotropy metrics for all the stimuli 302 
in Art 1 and increasing values of gain for the inhibitory layer. The gain ranged from 0, i.e., no inhibitory activity in the model 303 
(top left, light grey distribution), to 1, i.e., reference model (top right, blue distribution), in steps of 0.125. Differences 304 
between distributions and the distribution for the reference model were tested using two-sample Kolmogorov-Smirnov tests; 305 
p-values are colour coded as in Figure 3 in the main manuscript. 306 
 307 
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 308 

Figure S13. (Counterpart of Figure 5 in the main text for Art 2) Changes in markers of visual discomfort when the balance of 309 
excitation over inhibition is modified. Distributions of (A) activation, (B) sparseness, and (C) isotropy metrics for all the stimuli 310 
in Art 2 and increasing values of gain for the inhibitory layer. The gain ranged from 0, i.e., no inhibitory activity in the model 311 
(top left, light grey distribution), to 1, i.e., reference model (top right, blue distribution), in steps of 0.125. Differences 312 
between distributions and the distribution for the reference model were tested using two-sample Kolmogorov-Smirnov tests; 313 
p-values are colour coded as in Figure 3 in the main manuscript. 314 
 315 

  316 
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S7. Percentage of stimuli processed beyond 85% discomfort threshold when the gain of 317 

inhibition was decreased. 318 

 319 

Figure S14. Number of images with a metric value above the threshold associated with 15% most discomfort in the original 320 
model as a function of the inhibition in the model for the three markers of discomfort, namely (A) activation, (B) 321 
sparseness, and (C) isotropy. The gain of inhibition ranged from 0, i.e., no inhibitory activity in the model (top left, light 322 
grey distribution), to 1, i.e., reference model (top right, blue distribution), in steps of 0.125. 323 
 324 

 325 

  326 
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S8. Illustration of the ‘winner-takes-all’ process in orientation columns when inhibition is 327 

progressively decreased. 328 

 329 

Figure S15. Evolution of the average excitatory activity in the orientation-tuned channels in response of one image in Set 4 330 

when the gain of the inhibitory units in the model decreases. (top, central panel) One image in Set 4. (bottom panels) 331 

Average of the excitatory activity in the four orientation planes (respectively sensitive to 0º, left column, 45º, second 332 

column, 90º third column and 135º, bottom column) over several membrane time constants (4th to 20th membrane time 333 

constant) when the gain of the inhibitory layer is progressively decreased from 1 (default model implementation, top row) 334 

to 0 (bottom row) in steps of 0.125, as in Figure 5 in the main text. The lighter the colour, the more activated the cells are. 335 

A ’winner-takes-all’ process takes place where the orientation 0º take all the activity in the hypercolumns.  336 

 337 
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S9. Relationship between deviation with respect to 1/f and model activation 338 

We regressed model activation against two different measures of deviation with respect to 1/f. The 339 

first measure {Penacchio, 2015 #1658} is built by fitting a natural two-dimensional 1/f cone (i.e., the 340 

average of a large number of amplitude spectra of natural images) to the amplitude spectrum of an 341 

image and then computing the overall distance between the actual cone and the best fit by summing 342 

the ‘residuals’ of the fitting procedure. Each excess of contrast at any spatial frequency or 343 

orientation in the two-dimensional Fourier space can contribute to deviation with respect to the 344 

natural 1/f cone. This measure has been shown to be a robust predictor of discomfort {Le, 2017 345 

#1809;Penacchio, 2021 #2217;Penacchio, 2015 #1658;Wilkins, 2018 #2012}. The second measure is 346 

the slope of the amplitude spectrum as classically computed by averaging the amplitude across 347 

orientations and fitting a regression line in the log-log domain (e.g., {Tolhurst, 1992 #2101}), and 348 

used in in (Olman et al. 2004; Isherwood, Schira & Spehar 2017). We found strong correlation for all 349 

sets but Art 1 for the measure based on computing deviation in the two-dimensional Fourier domain 350 

but did not find any correlation for the spectral slope (see table and Figures S16-S19 below; non-351 

significant correlations are highlighted in grey in the table). 352 

 353 

Image set Correlation between model 

activation and global 

departure with 2-dimensional 

amplitude spectrum 

(Penacchio & Wilkins 2015) 

Correlation between model 

activation and spectral slope 

(Tolhurst, Tadmor & Chao 

1992) 

Architecture 1 r = 0.52, p = 2.2x10-6 

ci = [0.33, 0.67]  

r = 0.12, p = 0.30, NS 

ci = [-0.11, 0.34] 

Architecture 1 r = 0.66, p = 1.9x10-10 

ci = [0.51, 0.77] 

r = 0.23, p = 0.051, NS 

ci = [-0.001, 0.43] 

Art 1 r = 0.26, p = 0.071, NS 

ci = [-0.02, 0.50] 

r = -0.19, p = 0.19, NS 

ci = [-0.44, 0.10] 

Art 2 r = 0.61, p = 3.2x10-6 

ci = [0.39, 0.76] 

r = 0.06, p = 0.68 

ci = [-0.22, 0.33] 

 354 
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 355 

Figure S16. Relationship between model activation level in response to an input image and two measures of deviation with 356 
respect to 1/f for set Architecture 1. (A) Deviation from 1/f measured as the deviation between the full 2-dimensional 357 
Fourier amplitude spectrum and the average 1/f spectrum for natural scenes (see {Penacchio, 2015 #1658} for details) 358 
against model activation. Each point corresponds to a single image in Architecture 1 (N = 74). (B) Spectral slope against 359 
model activation. In both panels, the text at the top shows the Spearman’s rank correlation between the two metrics. 360 

 361 

 362 

Figure S17. Relationship between model activation level in response to an input image and two measures of deviation with 363 
respect to 1/f for set Architecture 2. (A) Deviation from 1/f measured as the deviation between the full 2-dimensional 364 
Fourier amplitude spectrum and the average 1/f spectrum for natural scenes (see {Penacchio, 2015 #1658} for details) 365 
against model activation. Each point corresponds to a single image in Architecture 2 (N = 74). (B) Spectral slope against 366 
model activation. In both panels, the text at the top shows the Spearman’s rank correlation between the two metrics. 367 

 368 
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 369 

Figure S18. Relationship between model activation level in response to an input image and two measures of deviation with 370 
respect to 1/f for set Art 1. (A) Deviation from 1/f measured as the deviation between the full 2-dimensional Fourier 371 
amplitude spectrum and the average 1/f spectrum for natural scenes (see {Penacchio, 2015 #1658} for details) against 372 
model activation. Each point corresponds to a single image in Art 1 (N = 50). (B) Spectral slope against model activation. In 373 
both panels, the text at the top shows the Spearman’s rank correlation between the two metrics. 374 

 375 

 376 

Figure S18. Relationship between model activation level in response to an input image and two measures of deviation with 377 
respect to 1/f for set Art 2. (A) Deviation from 1/f measured as the deviation between the full 2-dimensional Fourier 378 
amplitude spectrum and the average 1/f spectrum for natural scenes (see {Penacchio, 2015 #1658} for details) against 379 
model activation. Each point corresponds to a single image in Art 2 (N = 50). (B) Spectral slope against model activation. In 380 
both panels, the text at the top shows the Spearman’s rank correlation between the two metrics. 381 

 382 
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