

Comparing CNNs and PLSr for estimating wheat organs biophysical variables using proximal sensing

Alexis Carlier 1 , Sébastien Dandrifosse 1 , Benjamin Dumont 2 and Benoît Mercatoris 1,*

¹Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium ²Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium

Correspondence*: Corresponding Author benoit.mercatoris@uliege.be

SUPPLEMENTARY MATERIALS

DATA AVAILABILITY STATEMENT

2 Data and codes mentioned in this study are available on request from the corresponding author.

Nitrogen Tillering	inputs (kgN/ha) as Stem elongation	t: Flag leaf	Total nitrogen inputs (kg.ha-1)	Destructive measurements	Train/Val
0	0	0	0	\checkmark	Train
30	30	30	90	\checkmark	Val
40	40	40	120		
50	40	55	145		
60	60	60	180	\checkmark	Train
80	40	60	180	\checkmark	Train
90	30	60	180		
105	105	105	315	\checkmark	Train

Table S1. Fertilization trial (F) in 2020, 2021 and 2022.

Table S2. Fertilization trial (F) in 2019.

Nitrogen inputs (kgN/ha) at:			Total nitro con innuts (leg ho. 1)	Destructive messurements	Train (Val
Tillering	Stem elongation	Flag leaf	Total introgen inputs (kg.na-1)	Destructive measurements	Train/ vai
0	0	0	0	\checkmark	Train
30	30	30	90	\checkmark	Train
0	60	60	120		
60	60	0	120		
90	30	60	180		
60	60	60	180	\checkmark	Train
80	40	60	180	\checkmark	Val
105	105	105	315	\checkmark	Train

Nitrogen inputs (kgN/ha) at:			Total nitrogan inputs (kg ha 1)	Europicide at BBCH stages	Destructive measurements	Train/Val
Tillering	Stem elongation	Flag leaf	Total introgen inputs (kg.na-1)	Fungicide at BBCH stages	Destructive measurements	11aiii/ vai
40	40	40	120	/	\checkmark	Train
60	60	60	180	/		
80	60	60	200	/		
100	80	80	260	/	\checkmark	Train
40	40	40	120	39	\checkmark	Val
60	60	60	180	39	\checkmark	Train
80	60	60	200	39		
100	80	80	260	39	\checkmark	Val
40	40	40	120	32 - 55		
60	60	60	180	32 - 55		
100	80	80	260	32 - 55		
40	40	40	120	32 - 39 - 65	\checkmark	Train
60	60	60	180	32 - 39 - 65		
80	60	60	200	32 - 39 - 65		
100	80	80	260	32 - 39 - 65	\checkmark	Train

Table S3. Trials composed of different fertilization fractioning combined with different fungicide application programs (FP) in 2020, 2021 and 2022.

Figure S1. Backward feature selection with PLSr for DM Estimation: On the left, selected features for estimating DM from Ytrue include Plant Ratio, 95th Percentile of Height, MCARI, and BRF 490. On the right, the selected features for estimating DM from Ypseu comprise Plant Ratio, 95th Percentile of Height, MCARI, and BRF 550.

REFERENCES

- 3 Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., et al.
- 4 (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground-based
- 5 multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture
- 6 (Bloomington, Madison, USA)

Trial	year	stage	Dry matter (T/ha)	LAI	N concentration (%)	N uptake (kg N/ha)
	2019	30 32 39 65 75 89	1.36 +/- 0.31 3.39 +/- 0.80*** 6.77 +/- 1.30*** 9.37 +/- 2.03** 13.75 +/- 3.05** 17.73 +/- 4.01**	1.65 +/- 0.40 3.68 +/- 1.15*** 4.41 +/- 1.43*** 4.06 +/- 1.75*** 2.12 +/- 0.86*** 0.00 +/- 0.00	3.37 +/- 0.76*** 2.74 +/- 0.81*** 1.73 +/- 0.50*** 1.40 +/- 0.41*** 1.15 +/- 0.30*** 1.01 +/- 0.22***	46.58 +/- 16.34** 96.18 +/- 39.63*** 121.04 +/- 48.83*** 137.75 +/- 62.79*** 162.94 +/- 64.29*** 184.44 +/- 69.08***
F	2020	32 39 65 75 89	5.01 +/- 0.91* 8.11 +/- 1.36*** 12.75 +/- 1.54* 16.46 +/- 2.65*** 18.91 +/- 2.49***	3.97 +/- 1.12** 5.72 +/- 1.75*** 3.50 +/- 0.92*** 3.22 +/- 0.98*** 0.00 +/- 0.00	2.49 +/- 0.60*** 1.89 +/- 0.51*** 1.32 +/- 0.29*** 1.18 +/- 0.22*** 1.10 +/- 0.17***	127.52 +/- 46.34*** 157.23 +/- 55.55*** 170.03 +/- 51.86*** 197.95 +/- 58.29*** 210.40 +/- 51.27***
	2021	30 32 39 65 75 89	1.19 +/- 0.21* 3.98 +/- 0.73*** 7.33 +/- 1.44** 10.85 +/- 1.63** 17.55 +/- 2.02** 17.03 +/- 3.23***	1.48 +/- 0.35** 4.01 +/- 1.03*** 5.00 +/- 1.78*** 4.31 +/- 1.33*** 2.46 +/- 0.80*** 0.00 +/- 0.00	3.66 +/- 0.55*** 2.40 +/- 0.47*** 1.75 +/- 0.52*** 1.48 +/- 0.37* 1.13 +/- 0.28*** 1.27 +/- 0.21**	44.25 +/- 12.29*** 97.47 +/- 32.25*** 131.98 +/- 54.17*** 164.44 +/- 57.74** 201.83 +/- 67.94*** 218.50 +/- 60.96***
	2022	30 65 89	0.71 +/- 0.14* 9.02 +/- 1.71** 16.88 +/- 3.22***	1.09 +/- 0.24 3.20 +/- 0.88*** 0.00 +/- 0.00	3.57 +/- 0.42*** 1.37 +/- 0.24 1.34 +/- 0.23***	25.76 +/- 6.81** 123.89 +/- 32.43** 232.29 +/- 72.87***
	2020	38 65 89	8.20 +/- 1.50 12.82 +/- 1.78 19.35 +/- 1.55	3.53 +/- 0.92 4.16 +/- 0.89 0.00 +/- 0.00	1.89 +/- 0.32*** 1.42 +/- 0.18*** 1.19 +/- 0.14***	155.39 +/- 41.15* 183.78 +/- 42.32** 230.71 +/- 39.91**
FP	2021	39 65 89	8.70 +/- 2.48 13.33 +/- 1.74 17.93 +/- 1.91	5.44 +/- 1.70 4.61 +/- 1.04 0.00 +/- 0.00	1.67 +/- 0.29*** 1.56 +/- 0.25*** 1.33 +/- 0.21***	145.61 +/- 49.44 209.37 +/- 47.45 238.06 +/- 38.81
	2022	30 32 39 65 73 89	0.78 +/- 0.10 3.34 +/- 0.48 6.31 +/- 1.05 9.01 +/- 1.48* 12.89 +/- 2.29*** 15.19 +/- 3.24***	1.13 +/- 0.16 3.12 +/- 0.52 3.10 +/- 0.63** 2.97 +/- 0.70** 2.17 +/- 0.76*** 0.00 +/- 0.00	3.49 +/- 0.26 2.32 +/- 0.28* 1.63 +/- 0.14** 1.53 +/- 0.17* 1.44 +/- 0.29 1.42 +/- 0.16	27.09 +/- 3.90 77.95 +/- 17.35* 103.78 +/- 22.94** 137.53 +/- 27.01** 185.99 +/- 52.06** 214.95 +/- 51.72**

Table S4. Dry matter, LAI, nitrogen concentration and nitrogen uptake of the whole plant used in this study. Data are means +/- the standard deviation (n=3 or 4 repetitions). Significance of treatment effects were analyzed using a one-way ANOVA (*: P < 0.05; **: P < 0.01; **:, P < 0.001).

Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., and McMurtrey, J. E. (2000).
Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. *Remote Sensing of Environment* 74, 229–239. doi:10.1016/S0034-4257(00)00113-9

10 Devadas, R., Lamb, D. W., Simpfendorfer, S., and Backhouse, D. (2009). Evaluating ten spectral vegetation

indices for identifying rust infection in individual wheat leaves. *Precision Agriculture* 10, 459–470.
doi:10.1007/s11119-008-9100-2

13 Gitelson, A. A., Keydan, G. P., and Merzlyak, M. N. (2006). Three-band model for noninvasive estimation

14 of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. *Geophysical Research*

15 *Letters* 33. doi:10.1029/2006GL026457

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., and Dextraze, L. (2002). Integrated
 narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision

Modal	Data	Datasat	et Nuptake			DM				
Model	Dala	Dataset	Stem	Linf	L1	Ear	Stem	Linf	L1	Ear
EfficienNetB0	Ypseu	train	0.95	0.99	0.75	0.91	0.59	0.87	-0.14	0.95
EfficienNetB0	Ytrue	train	0.82	0.93	0.61	0.88	0.91	0.96	-0.02	0.93
EfficienNetB4	Ypseu	train	0.49	0.68	0.65	0.62	0.58	0.87	-0.37	0.93
EfficienNetB4	Ytrue	train	0.66	0.83	-1.38	0.55	0.93	0.98	0.5	0.95
ResNet50	Ypseu	train	0.81	0.95	0.73	0.92	0.52	0.85	0.04	0.86
ResNet50	Ytrue	train	0.97	0.99	0.84	0.99	0.98	0.99	0.71	0.98
EfficienNetB0	Ypseu	val	0.83	0.97	0.75	0.87	0.58	0.87	-0.17	0.94
EfficienNetB0	Ytrue	val	0.77	0.91	0.49	0.85	0.84	0.95	-0.31	0.92
EfficienNetB4	Ypseu	val	0.4	0.7	0.49	0.51	0.62	0.88	-0.24	0.93
EfficienNetB4	Ytrue	val	0.55	0.83	-1.8	0.44	0.87	0.96	0.2	0.94
ResNet50	Ypseu	val	0.63	0.92	0.73	0.88	0.59	0.86	0.12	0.87
ResNet50	Ytrue	val	0.78	0.96	0.66	0.9	0.91	0.98	0.46	0.96

Table S5.	R ² of the differ	ent models to p	predict DM a	and Nupt	proportion of	each organ.
				T 1	1	

Table S6. Pearson correlation table of the agronomic data

Variables	Dry matter (T/ha)	LAI	N concentration (%)	N uptake (kg N/ha)
Dry matter (T/ha)	1.00	-0.27	-0.71	0.87
LAI	-0.27	1.00	0.16	0.03
N concentration (%)	-0.71	0.16	1.00	-0.44
N uptake (kg N/ha)	0.87	0.03	-0.44	1.00

 Table S7.
 Vegetation indices selected in this study.

Name	VI formulation	Reference
NDRE	$\frac{BRF800-BRF720}{BRF800+BRF720}$	Barnes et al. (2000)
mNDb	$\frac{BRF490}{BRF490+BRF800}$	Jay et al. (2017)
CIrede	$\frac{BRF800}{BBF720} - 1$	Gitelson et al. (2006)
NDVI	$\frac{BRF800-BRF680}{BBF800+BBF680}$	Rouse et al. (1974)
PSRI	$\frac{BRF680-BRF490}{BRF800}$	Devadas et al. (2009)
SR	$\frac{BRF800}{BRF680}$	
GR	$\frac{BRF550}{BRF680}$	
GNDVI	$\frac{BRF800-BRF550}{BRF800+BRF550}$	Rouse et al. (1974)
OSAVI	$\frac{BRF800 - BRF680}{BRF800 + BRF680 + 0.16}$	Haboudane et al. (2002)
MSAVI	$\frac{2 \cdot BRF800 + 1 - \sqrt{(2 \cdot BRF800 + 1)^2 + 8 \cdot (BRF800 - BRF680)}}{2}$	Qi et al. (1994)
MCARI	$\frac{(BRF720 - BRF680) - 0.2 \cdot (B\overline{R}F720 - BRF550)}{BRF720 / BRF680}$	Daughtry et al. (2000)
CIgreen	$\frac{BRF800}{BRF550} - 1$	Gitelson et al. (2006)

18 agriculture. Remote Sensing of Environment 81, 416–426. doi:10.1016/S0034-4257(02)00018-4

Jay, S., Gorretta, N., Morel, J., Maupas, F., Bendoula, R., Rabatel, G., et al. (2017). Estimating leaf
chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery. *Remote Sensing of Environment* 198, 173–186. doi:10.1016/j.rse.2017.06.008

22 Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S. (1994). A modified soil adjusted

23 vegetation index. *Remote Sensing of Environment* 48, 119–126. doi:10.1016/0034-4257(94)90134-1

Figure S2. Backward feature selection with PLSr for LAI Estimation: On the left, selected features for estimating LAI from Ytrue include SR, GNDVI, MCARI, CIgree, BRF 900 and BRF 720. On the right, the selected features for estimating LAI from Ypseu comprise NDRE, SR, GNDVI, CIgreen, CIrede and BRF 550

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring vegetation systems in the
 Great Plains with ERTS

Figure S3. Backward feature selection with PLSr for Nuptake Estimation: On the left, selected features for estimating Nuptake from Ytrue include Plant Ratio, 95th percentile of height and MCARI. On the right, the selected features for estimating Nuptake from Ypseu comprise Plant Ratio, 95th percentile of height, GR, MCARI, mNDB and BRF 550.

Figure S4. Backward feature selection with PLSr for Nrate Estimation: On the left, selected features for estimating Nrate from Ytrue include 95th percentile of height and MCARI.. On the right, the selected features for estimating Nrate from Ypseu comprise 95th percentile of height, GR and mNDB.