
Appendix 1: Summary Table

Table 1 presents a summary of results for various distributions. As before, let Q1

and Q3 denote the first and third quartiles and let Oi denote the corresponding
octiles of the standard normal distribution. We note that for the distributions
considered, TM < TQ < K.

Appendix 2: Details for Log-normal Distribution

We provide some derivations on comparing the performance measures for the
log-normal distribution. Recall that classical measures for log-normal (see ta-
ble 1) are:

µ′ = eµ+σ2/2, M ′ = eµ, (σ′)2 =
(
eσ

2

− 1
)
e2µ+σ2

,

S′ =
(
eσ

2

+ 2
)√

eσ2 − 1, K ′ = e4σ
2

+ 2e3σ
2

+ 3e2σ
2

− 6

To compute MAD-based measures, we consider the following integral:

I(z) =

∫ z

0

tf(t) dt =
1

σ
√
2π

∫ z

0

e−(log t−µ)2/2σ2

dt, z > 0

To evaluate this integral, we consider the following change of variables: u =
(log t−µ)/σ giving us dt = σeµ+σu du. If we define z∗ = (log z−µ)/σ, then we
can we-write the integral in equation () as follows:

I(z) =
1

σ
√
2π

∫ z∗

−∞
e−u2/2σeµ+σu du =

1√
2π

∫ z∗

−∞
e−(u2−2σu+σ2)/2eµ+σ2/2 du

= µ′
∫ z∗

−∞

[
1√
2π

e−(u−σ)2/2

]
du

The term in the bracket is the density function of a normal random variable
with mean σ and unit variance. With the simple change of variable v = u− σ,
we can re-write the above integral as

I(z) = µ′
∫ z∗−σ

−∞

1√
2π

e−v2/2 dv = µ′Φ(z∗ − σ) = µ′Φ

(
log z − µ

σ
− σ

)
Next, let us compare MAD-based and quantile-based measures. The MAD-

based measures for log-normal distribution (Table 1) are

H ′ = µ′(2Φ(σ)− 1
)
, A′

M =
eσ

2/2 − 1

eσ2/2
(
2Φ(σ)− 1

) ,
T ′
M =

−1− 2Φ(σ) + 2Φ(σ −Q1) + 2Φ(σ −Q3)

2Φ(σ)− 1

(1)
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Table 1: Summary Comparison of Distributions

Measure Classical MAD-based Quantile-based
Uniform Distribution (symmetric)

Deviation σ =
(b− a)

2
√
3

H =
(b− a)

4
HQ =

(b− a)

2
H < σ < HQ

Skewness S = 0 AM = 0 AQ = 0

Kurtosis K = 1.8 TM = 0.5 TQ = 1
TM < TQ < K

Normal Distribution N(µ, σ2) (symmetric)

Deviation σ H =

√
2

π
σ ≈ 0.80σ HQ = Q3 σ ≈ 0.68σ

HQ < H < σ

Skewness S = 0 AM = 0 AQ = 0

Kurtosis K = 3 TM = −1 + 2e−Q2
3/2 TQ =

O7 −O5

Q3

TM < TQ < K ≈ 0.59 ≈ 1.23
Log-Normal Distribution (µ, σ2) (asymmetric)

Deviation
√
(eσ2 − 1)e2µ+σ2 eµ+σ2/2 (2Φ(σ)− 1) eµ

(eσQ3 − e−σQ3)

2
H ′

Q < H ′ < σ′

Skewness (eσ
2

+ 2)
√
eσ2 − 1

(eσ
2/2 − 1)

eσ2/2 (2Φ(σ)− 1)
−1 +

2eσQ3

(eσQ3 + 1)
0 < A′

M , A′
Q < S′ (unbounded)

Kurtosis e4σ
2

+ 2e3σ
2 NM (σ,Q1, Q3)

2Φ(σ)− 1

NQ(σ,O5, O7)

(eσQ3 − e−σQ3)

+3e2σ
2

− 6
T ′
M < T ′

Q < K ′ (unbounded) (unbounded)

NM (σ,Q1, Q3) = −1− 2Φ(σ) + 2Φ(σ −Q1) + 2Φ(σ −Q3)
NQ(σ,O5, O7) = (e−σO5 − e−σO7) + (eσO7 − eσO5)
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Table 1. Summary Comparison of Distributions (continued)

Measure Classical MAD-based Quantile-based
Exponential Distribution with rate λ (asymmetric)

Deviation σ =
1

λ
H =

log 2

λ
≈ 0.69σ HQ =

log 3

2λ
≈ 0.55σ

H < HQ < σ

Skewness S = 2 AM = −1 +
1

log 2
AQ = −1 +

2 log 2

log 3
AQ < AM < S ≈ 0.44 ≈ 0.26

Kurtosis K = 9 TM = 3− 3 log 3

2 log 2
TQ = 1 +

log (7/5)

log 3
TM < TQ < K ≈ 0.62 ≈ 1.31

Laplace Distribution with location µ and scale b (symmetric)

Deviation σ = b
√
2 ≈ 1.41b H = b HQ = b log 2 ≈ 0.69b

HQ < H < σ

Skewness S = 0 AM = 0 AQ = 0

Kurtosis K = 6 TM = log 2 ≈ 0.69 TQ =
log 3

log 2
≈ 1.58

TM < TQ < K
Pareto Distribution with shape α and scale β (asymmetric)

Deviation σ = β
(α−1)

√
α

α−2 H = βα( α√2−1)
(α−1) HQ =

β( α√4− α
√

4/3)

2

HQ < H < σ (α > 2) (α > 1)

Skewness S = 2(1+α)
(α−3)

√
α−2
α AM = −1 +

α√2
α( α√2−1)

AQ = −1 + 2( α√4− α√2)
α√4− α

√
4/3

AQ < AM < S (α > 3)

Kurtosis K = 6(α3+α2−6α−2)
α(α−3)(α−4) TM = NM (α)

2( α√2−1)
TQ =

NQ(α)
α√4− α

√
4/3

TM < TQ < K (α > 4)

NM (α) = 3 α
√
4/3 + α

√
4− 2 α

√
2− 2

NQ(α) = ( α
√
8/5− α

√
8/7) + ( α

√
8− α

√
8/3)
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whereas the quantile-based measures (table 1) are:

H ′
Q = eµ

(eσQ3 − e−σQ3)

2
, A′

Q = −1 +
2eσQ3

eσQ3 + 1
,

T ′
Q =

(e−σO5 − e−σO7) + (eσO7 − eσO5)

eσQ3 − e−σQ3

(2)

To compare MAD-based and quantile-based measures, we will use the fol-
lowing bound on complementary error function

erfc(x) ≤ e−x2

where erfc(x) =
2√
π

∫ ∞

x

e−t2 dt and x > 0

From this bound and the equation H ′ = 2µ′ erf(σ/
√
2) we immediately obtain

H ′ ≥ 2eµ(eσ
2/2 − 1). On the other hand, since Q1 = −Q3 and Q3 < 1 we have

for σ >
√
2:

H ′
Q = eµ

(eσQ3 − e−σQ3)

2
< eµ

(eσQ3 − 1)

2
< 2eµ(eσ − 1) < 2eµ(eσ

2/2 − 1) ≤ H ′

Since H ′ ≤ σ′ we immediately obtain H ′
Q < H ′ ≤ σ′.

Next, we consider the skewness. It is easy to show that for large σ, the
classical skewness S′ > 1. In fact, if we define a = exp(σ2) then we can re-write
S′ = (a+2)

√
a− 1. It is clear that S′ increases with a and is unbounded. Since

the MAD skewness A′
M ≤ 1 and quantile skewness A′

Q ≤ 1, we can solve for
S∗ = 1 and (numerically) find σ ≈ 0.133. For σ > 0.133 we have have S′ > 1
and, therefore, both A′

M < S′ and A′
Q < S′.

Next, we consider the quantile-based kurtosis T ′
Q. From equation (2) we

have

T ′
Q = eσ(O7−Q3)

[
1− e−σ(O7−O5) + e−σ(O7+σO5) − e−2σO7

1− e−2σQ3

]
> eσ(O7−Q3) (3)

Since (O7 −Q3) > 0 it follows that T ′
Q > 1 and T ′

Q 7→ ∞ as σ 7→ ∞. Therefore,
for log-normal distributions, the quantile-based kurtosis T ′

Q is unbounded. By
contrast, the MAD-based kurtosis T ′

M is always in the range [0, 1] and therefore,
T ′
M < T ′

Q. Similarly, since (O7 −Q3) < 1, from equation (3) we can show

T ′
Q < 2eσ(O7−Q3) < 2eσ

On the other hand, for the classical kurtosis K ′ we have

K ′ = e4σ
2

(1 + 2e−σ2

+ 3e−2σ2

− 6e−4σ2

) > e4σ
2

> 2eσ > T ′
Q

Therefore, for large σ, K ′ > 2eσ > T ′
Q.

Let us establish some asymptotic expressions for MAD-based skewness and
kurtosis for σ 7→ 0 and for σ 7→ ∞. We start with σ 7→ 0. Since the derivative of
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the cumulative distribution function Φ(·) is the density function f(·), we have

∂Φ(y)/∂y = e−y2/2/
√
2π. Therefore, for σ 7→ 0 we have

∂Φ(σ −Q1)

∂σ
7→ e−Q2

1/2

√
2π

,
∂Φ(σ −Q3)

∂σ
7→ e−Q2

3/2

√
2π

,
∂Φ(σ)

∂σ
7→ 1√

2π

Noting that Q1 = −Q3 and σ∗ 7→ eµ and applying the l’Hopital rule to MAD-
based measures in equation (1) we find

H ′/σ′ 7→
√
2/π, A′

M 7→ 0, T ′
M 7→ −1 + 2e−Q2

3/2 ≈ 0.59

Applying the l’Hopital rule for the quantile-based measures in equation (2) we
find:

H ′
Q/σ

′ 7→ Q3 ≈ 0.68, A′
Q 7→ 0, T ′

Q 7→ (O7 −O5)/Q3 ≈ 1.23

In other words, for σ 7→ 0, both MAD-based and quantile-based measures to
the corresponding values for normal distribution.

Next, we consider the case σ 7→ ∞. In this case, Φ(σ) 7→ 1. It is easy to
show that in this case,

H ′/σ′ 7→ 1, A′
M 7→ 1, T ′

M 7→ 1

For the quantile measures, it easy to show H ′
Q 7→ ∞ An application of the

l’Hopital’s rule to A′
Q in equation (2) shows that A′

Q 7→ 1. Finally, it follows
from equation (3) that T ′

Q 7→ ∞ and is unbounded. Therefore, for σ 7→ ∞ we
have

H∗
Q 7→ 0, A∗

Q 7→ 1, T ∗
Q 7→ ∞

Appendix 3: Details for Laplace Distribution

We consider the following integral

J(z) =

∫ ∞

z

xf(x) dx =
1

2b

∫ ∞

z

xe|−x|/b dx

To evaluate this integral, we first consider the case z ≥ 0. With a change of
variable u = x/b, we obtain

J(z) =
1

2b

∫ ∞

z

xe−x/b dx =
b

2

∫ ∞

z/b

ue−u du =
b

2

∫ ∞

0

ue−u du− b

2

∫ z/b

0

ue−u du

=
b

2
Γ(2)− b

2

[
−(u+ 1)e−u

] ∣∣∣∣z/b
0

=
(b+ z)

2
e−z/b

where Γ(·) denotes the Gamma function. Note that in particular, J(0) = b/2.
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Next, we consider the case z ≤ 0. Again we consider a change of variable
u = x/b and obtain

J(z) =
1

2b

∫ ∞

z

xe−|x|/b dx =
1

2b

∫ 0

z

xex/b dx+
1

2b

∫ ∞

0

xe−x/b dx

=
b

2

∫ 0

z/b

ueu du+
b

2

∫ ∞

0

xe−x/b dx =
b

2
[(u− 1)eu]

∣∣∣∣0
z/b

+
b

2

=
(b− z)

2
ez/b

Appendix 4: Details for Pareto Distribution

This distribution has infinite mean µ for α ≤ 1, undefined variance σ2 for α ≤ 2,
undefined skewness S for α ≤ 3 and undefined (excess) kurtosis K for α ≤ 4.
These measures are

µ =
αβ

α− 1
, σ2 =

β2α

(α− 1)2(α− 2)
, S =

2(1 + α)

α− 3

√
α− 2

α
,

K =
6(α3 + α2 − 6α− 2)

α(α− 3)(α− 4)

Recall that MAD-based measures for Pareto are

H =
βα( α

√
2− 1)

α− 1
, AM = −1 +

α
√
2

α( α
√
2− 1)

,

TM =
3 α
√
4/3 + α

√
4− 2 α

√
2− 2

2( α
√
2− 1)

whereas quantile-based measures are

HQ =
β( α

√
4− α

√
4/3)

2
, AQ = −1 +

2( α
√
4− α

√
2)

α
√
4− α

√
4/3

,

TQ =
( α
√
8/5− α

√
8/7) + ( α

√
8− α

√
8/3)

α
√
4− α

√
4/3

We start with comparing deviation measures σ, H and HQ. Since all these
measures are proportional to β, we can take β = 1 and obtain:

HQ <
α
√
4− 1

2
=

( α
√
2− 1)( α

√
2 + 1)

2
=

(α− 1)H

α
· (

α
√
2 + 1)

2
< H

Since H < σ we have HQ < H < σ. Next, we consider the skewness. The
median is decreasing with α and for α > 1 we have

AQ < −1 +
2( α

√
4− α

√
2)

α
√
4− α

√
4/3

< 0.5
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Using the inequality et ≤ 1/(1− t) for t ∈ [0.1) and substituting t = log 2/α we
have log 2/α ≥ 1− 1/21/α and obtain

AM = −1 +
α
√
2

α
√
2− 1)

≥ −1 +
1

log 2
> 1/35

Therefore, AQ < AM . Note that for the classical skewness with α > 3

S = 2

(
1 +

4

α− 3

)√
1− 2

α
> 2

√
1− 2

α
>

2√
3
> 1

Since AM ≤ 1 we conclude AQ < AM < S. For α 7→ ∞, a simple application of
the L’Hopital’s rule gives σ 7→ β and S 7→ 2 as α 7→ ∞.

Finally, let us consider kurtosis. On the one hand,

TQ <
( α
√
2− 1) + ( α

√
8− α

√
4)

α
√
4− 1

=
( α
√
2 + 1)2 − 2 α

√
2

α
√
2 + 1

<
α
√
2 + 1 < 3

On the other hand. since O7 > Q3 and O3 > Q1 we have

TQ >
α
√
4 + α

√
4/3

α
√
4− α

√
4/3

= 1 +
2 α
√

4/3
α
√
4− α

√
4/3

> 1 +
2 α
√

4/3
α
√
4

= 1 +
2
α
√
3
> 1

Since MAD-based kurtosis 0 < TM < 1 we immediately obtain TM < TQ. On
the other hand, for classical kurtosis with α > 4, we have

K = 6

(
1 +

8(α− 2)2 + 12(α− 3) + 6

α(α− 3)(α− 4)

)
> 6

Therefore TM < TQ < K. By the L’Hopital’s rule, it is easy to show that K 7→ 6
as α 7→ ∞.

Let us examine the asymptotic behavior of quantile-based and MAD-based
measures for α 7→ 1 and α 7→ ∞. As before, assume β = 1. We start with α 7→
1. From equations () and () we immediately obtain the following asymptotic
expressions for Pareto distribution as α 7→ 1:

H 7→ ∞
AM 7→ 1

TM 7→ 1

and


HQ 7→ 4/3

AQ 7→ 0.5

TQ 7→ (8/5− 8/7) + (8− 8/3)

(4− 4/3)
≈ 2.17

Next, we consider the limiting case when α 7→ ∞ Since for α > 1 we have
0 < log 2/α < 1. Let us consider the following inequality 1 + t < et < 1/(1− t)
for t < 1. Substituting t = (log 2)/α we have

log 2 < α(
α
√
2− 1) <

log 2

1− (log 2)/α
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Therefore, for large α we have α( α
√
2 − 1) 7→ log 2. A simple application of

the l’Hopital rule gives us H/σ 7→ log 2. Substituting results from the pre-
vious equation to expressions in equations () and () we obtain the following
asymptotic expressions for Pareto distribution as α 7→ ∞

H 7→ log 2

α− 1
7→ 0

AM 7→ −1 +
1

log 2
≈ 0.44

TM 7→ 3− 3 log 3

2 log 2
≈ 0.62

and


HQ 7→ log 3

2(α− 1)
7→ 0

AQ 7→ −1 +
2 log 2

log 3
≈ 0.26

TQ 7→ 1 +
log (7/5)

log 3
≈ 1.31
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