Appendix 1: Summary Table

Table 1 presents a summary of results for various distributions. As before, let Q1
and @3 denote the first and third quartiles and let O; denote the corresponding
octiles of the standard normal distribution. We note that for the distributions
considered, Ty < Ty < K.

Appendix 2: Details for Log-normal Distribution
We provide some derivations on comparing the performance measures for the
log-normal distribution. Recall that classical measures for log-normal (see ta-
ble 1) are:
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To compute MAD-based measures, we consider the following integral:
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To evaluate this integral, we consider the following change of variables: u =
(logt — p)/o giving us dt = gel*T7% du. If we define z* = (log z — u)/o, then we
can we-write the integral in equation () as follows:
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The term in the bracket is the density function of a normal random variable
with mean o and unit variance. With the simple change of variable v = u — o,
we can re-write the above integral as
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Next, let us compare MAD-based and quantile-based measures. The MAD-
based measures for log-normal distribution (Table 1) are
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Table 1: Summary Comparison of Distributions

Measure Classical MAD-based Quantile-based
Uniform Distribution (symmetric)
b— b— b—
Deviation o= (b—a) H = (b—a) Hg = (b—a)
2V/3 4 2
H<o< HQ
Skewness S=0 Ay =0 Ag =0
Kurtosis K=138 Tyv =0.5 To =1
Ty < TQ < K
Normal Distribution N(u,0?) (symmetric)
2
Deviation o H=4/-0~0800c Hg=Q30~0.680
™
Ho<H<o
Skewness S=0 Ay =0 Ag =0
Kurtosis K=3 Tar = —1+2e"9/2 T, = %
3
Ty <Tg < K ~ 0.59 ~ 1.23
Log-Normal Distribution (,c?) (asymmetric)
0Q3 _ ,—0Qs
Deviation (e7? — 1)e2uto? ehto’/2 (2®(o)—1) e* —(e 26 )
Hp < H <o
o?/2 _ 1) 2 Qs
2 e e
k 7 +2)Ve —1 ( B
Shewness (e +2)Ve ¢/ (28(0) — 1) MGy
0 < Ay, A < 8" (unbounded)
. 452 302 NM(U7Q17Q3) NQ(Ja 05707)
KurtOSlS e + 26 w m
2
+3e* — 6
Ty <TH <K' (unbounded) (unbounded)

Nu(o,Q1,Q3) = —1 —20(0) + 20(0 — Q1) +2®(0 — Q3)
NQ(@ 05707) — (67005 _ 67‘707) + (6007 _ 6005)



Table 1. Summary Comparison of Distributions (continued)

Measure Classical MAD-based Quantile-based
Exponential Distribution with rate A (asymmetric)
.. 1 log 2 log 3
D t =— H= ~ 0. Hy = ~ 0.
eviation o \ 3 0.690 Q o\ 0.550
H<Hg<o
1 2log2
ki S =2 Ay =-1 Ag=-1
Skewness S M + log 2 Q + log 3
AQ <Ay <S ~ 0.44 ~ 0.26
) 3log3 log (7/5)
HILostS M 2log2 @ + log 3
Ty <Tg < K ~ 0.62 ~ 1.31

Laplace Distribution with location i and scale b (symmetric)
Deviation o =bV2~141b H=b Hg = blog2 = 0.69b
Ho<H<o
Skewness S=0 Ay =0 Ag =0

. log 3
Kurtosis K=6 Ty =log2 ~ 0.69 T = log 2 =~ 1.58
0
Ty < TQ < K
Pareto Distribution with shape o and scale 8 (asymmetric)
Deviation o= 7(0/11) 25 H= 7‘3&((5_[21;1) Hg = BLVA=Y/4/3) %;(XV 4/3)
Ho<H<o (o> 2) (a>1)

. — 20+4a) [a—2 _ V2 - _ 2(V4-¥2)
Skewness S=%m V%S Ay =—1+ a(V3 D) Ag=-1+ Vi /i
Ag <Ay < S (a>3)

. _ 6(c®+a®—6a—2) _ Nu(a) _ __No(o)
KurtOSIS K = W T]M = 2( %_1) TQ = m
TM<TQ<K (Oz>4)

Ny(o) =3%/4/3+ /4 —-23/2 -2
No(a) = (3/8/5— 3/8/7) + (V8- {/8/3)



whereas the quantile-based measures (table 1) are:
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To compare MAD-based and quantile-based measures, we will use the fol-
lowing bound on complementary error function
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From this bound and the equation H' = 2y’ erf(o/v/2) we immediately obtain
H > 26“(6"2/2 —1). On the other hand, since Q; = —Q3 and Q3 < 1 we have
for o > V/2:
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Since H' < ¢’ we immediately obtain H(’;, < H <.
Next, we consider the skewness. It is easy to show that for large o, the
classical skewness S’ > 1. In fact, if we define a = exp(c?) then we can re-write
S’ = (a+2)va— 1. Tt is clear that S’ increases with a and is unbounded. Since
the MAD skewness A%, < 1 and quantile skewness A’Q < 1, we can solve for
S* =1 and (numerically) find o &~ 0.133. For ¢ > 0.133 we have have S§' > 1
and, therefore, both A}, < S’ and A, < 5"
Next, we consider the quantile-based kurtosis 7. From equation (2) we
have
1— 6—0(07—05) + e—U(O7+aO5) _ 6—2007

T}, = e7(07=Qs) > ¢o(0r=Qs) (3

1—e20Q@s

Since (O7 — Q3) > 0 it follows that T, > 1 and T¢, = oo as 0 — co. Therefore,
for log-normal distributions, the quantile-based kurtosis TfQ is unbounded. By
contrast, the MAD-based kurtosis T}, is always in the range [0, 1] and therefore,
Ty < T4 Similarly, since (O7 — @3) < 1, from equation (3) we can show

7"(’2 < 26‘7(07*Q3) < 2e°
On the other hand, for the classical kurtosis K’ we have
K = e4"2(1 +2e77 3720 — 66_4‘72) > et > 207 > T4

Therefore, for large o, K’ > 2¢% > TfQ.
Let us establish some asymptotic expressions for MAD-based skewness and
kurtosis for o +— 0 and for o +— co. We start with ¢ — 0. Since the derivative of



the cumulative distribution function ®(-) is the density function f(-), we have
dD(y)/dy = e~¥*/2/\/2m. Therefore, for o — 0 we have

02(0 - Q1) e~Qi/2 0%(0 ~Qs) e~ Q3/2 0%(0) 1
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Noting that Q1 = —Q3 and ¢* — e¢* and applying the I’'Hopital rule to MAD-
based measures in equation (1) we find

H' o' \/2]m, A0, Th— —142e9/2 ~0.59

Applying the ’'Hopital rule for the quantile-based measures in equation (2) we
find:

Hg /o' — Qs ~ 0.68, 00, TH — (07 — 05)/Q3 ~ 1.23

In other words, for o +— 0, both MAD-based and quantile-based measures to
the corresponding values for normal distribution.

Next, we consider the case 0 — oo. In this case, ®(o) — 1. It is easy to
show that in this case,

H' o' — 1, e 1 Ty 1

For the quantile measures, it easy to show Hég — oo An application of the
I"'Hopital’s rule to A, in equation (2) shows that Ay — 1. Finally, it follows
from equation (3) that Tf, — oo and is unbounded. Therefore, for o — oo we
have

Hg =0, Ag =1, T4 = o0

Appendix 3: Details for Laplace Distribution

We consider the following integral

J(z) = /Ooxf(z)dx: ;b/ooxelf‘r‘/bdx

To evaluate this integral, we first consider the case z > 0. With a change of
variable u = x /b, we obtain

1 00 b 00 0o z/b
J(z) = —/ e/ dy = f/ ue “du = é/ ue” " du — é/ ue " du
20 /., 2 ) 2 Jo 2 Jo

b b Y
= 5T(@) — 5 [~(u+ De™]

0

where I'(+) denotes the Gamma function. Note that in particular, J(0) = b/2.



Next, we consider the case z < 0. Again we consider a change of variable
u = x/b and obtain
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Appendix 4: Details for Pareto Distribution

This distribution has infinite mean y for a < 1, undefined variance o2 for a < 2,
undefined skewness S for @ < 3 and undefined (excess) kurtosis K for a < 4.
These measures are

af 9 B2a 20+ a) Ja—2
H=— 0 = 5/, o\ S = )
a—1 (a—1)%(ax—2) a—3 o
K- 6(a® + a? — 6a — 2)
 ala—3)(a—4)
Recall that MAD-based measures for Pareto are
o fe¥2-n Y2
a1 o(¥2-1)
3/4/3+ V4-2V2-2
Ty =
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whereas quantile-based measures are
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@ Vi- /43
We start with comparing deviation measures o, H and Hg. Since all these
measures are proportional to 3, we can take S = 1 and obtain:

Va-1 (2-1)(¥2+1) (a—1H (V2+1)

QST 2 o S

Since H < o we have Hg < H < o. Next, we consider the skewness. The
median is decreasing with o and for a > 1 we have
2(V4— V2
Ag < —1+ AA- D) 5

Vi /7



Using the inequality e’ < 1/(1—¢) for ¢t € [0.1) and substituting ¢ = log 2/ we
have log2/a > 1 — 1/2'/* and obtain

{2 1
Ay=—-1+—->-14+—>1/35
M V2-1) — log 2 /

Therefore, Ag < Ap. Note that for the classical skewness with a > 3

4 2 2 2
S:2<1+>,/1—>2 1l——>—=>1
a—3 « a” V3

Since Ay < 1 we conclude Ag < Ay < S. For o+ 00, a simple application of
the L’Hopital’s rule gives o +— [ and S — 2 as a — oo.
Finally, let us consider kurtosis. On the one hand,

(V2-1)+ (V8- ¥4 _ (V2+1)-2¥2
Tg < i1 = Bl <V2+1<3

On the other hand. since O; > Q3 and O3 > ()1 we have
YA+ /473 2%/4/3 2%/4/3 2

Q> L =14 e
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Since MAD-based kurtosis 0 < Ty < 1 we immediately obtain Ths < Ty. On
the other hand, for classical kurtosis with a > 4, we have

>1

K=t (1+8(a—2)2+12(a—3)+6) 6

ala—3)(a—4)

Therefore Ty < Ty < K. By the L’Hopital’s rule, it is easy to show that K — 6
as o — 0.

Let us examine the asymptotic behavior of quantile-based and MAD-based
measures for a — 1 and a — co. As before, assume g = 1. We start with a —
1. From equations () and () we immediately obtain the following asymptotic
expressions for Pareto distribution as « +— 1:

H — o Hg +— 4/3
AMH 1 and AQ — 0.5
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Next, we consider the limiting case when « +— oo Since for @ > 1 we have
0 <log2/a < 1. Let us consider the following inequality 1+t < et < 1/(1 —t)
for t < 1. Substituting ¢t = (log2)/a we have

log 2

10g2<a(%71)<m



Therefore, for large o we have o ¥/2 — 1) +— log2. A simple application of
the 'Hopital rule gives us H/o — log2. Substituting results from the pre-
vious equation to expressions in equations () and () we obtain the following
asymptotic expressions for Pareto distribution as o+ oo
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