

Supplementary Material

1 SUPPLEMENTARY EQUATIONS AND PARAMETERS

1.1 Electronic coupling of electrode and organic material

The electronic coupling used in the expression for the injection rates J_{Xi} is given by:

$$J_{Xi} = j_0^{\text{electrode}} \cdot \exp\left(-2\frac{r_i}{\delta_0^{\text{electrode}}}\right), \qquad (S1)$$

where $j_0^{\text{electrode}} = 0.001 \text{ eV}$, $\delta_0^{\text{electrode}} = 0.3 \text{ nm}$ and r_i the distance between the electrode and site *i*.

1.2 Electronic coupling for charge transfer from site to site

The electronic coupling J_{ij} is given by (similar to eq. S1):

$$J_{ij} = j_0 \cdot \exp\left(-2\frac{r_i j}{\delta_0}\right),\tag{S2}$$

where $j_0 = 0.001 \text{ eV}$ and $\delta_0 = 0.1 \text{ nm}$. The reorganization energy for all charge transfer processes is $\lambda = 0.2 \text{ eV}$.

1.3 Dexter couplings

As discussed in the main manuscript, we treat Dexter transfer similar to charge transfer by using Marcus theory. The couplings for Dexter processes are given by:

$$J_{ij}^{\text{Dexter}} = j_0^{\text{Dexter}} \cdot \exp\left(-2\frac{r_{ij}}{\delta_0}\right) , \qquad (S3)$$

where the maximum dexter coupling j_0^{Dexter} is 0.0001 eV. The decay length is the same as for regular charge transfer $\delta_0 = 0.1 \text{ nm}$.

1.4 Transition dipole moments

The norm of the transition dipole moments used in the Foerster coupling (9) in the main manuscript can be computed with:

$$|\vec{\mu}_{i}| = \sqrt{\frac{k}{\frac{4}{3}\tau_{\rm rad}\alpha^{3}(E_{i}^{X})^{3}}},$$
(S4)

where $k = 2.418\,884\,326\,509 \times 10^{-17}\,\text{s}$, τ_{rad} is the radiative life which is the inverse radiative decay rate given in table S3, $\alpha = 1/137$ is the fine-structure constant and E_i^X is the excitation energy of site *i*, which is defined in equation (6) in the main paper.

To obtain the vectorial transition-dipole moment, we generate a randomly orientated unit-vector $\vec{n_i}$ for each

site. The vectorial transition-dipole moment is then given by:

$$\vec{\mu}_i = |\vec{\mu}_i|\vec{n}_i . \tag{S5}$$

The orientation factor κ in the Foerster-coupling is given by:

$$\kappa = \vec{n}_i \cdot \vec{n}_j - 3\left(\frac{\vec{r}_{ij}}{r_{ij}} \cdot \vec{n}_i\right) \left(\frac{\vec{r}_{ij}}{r_{ij}} \cdot \vec{n}_j\right) , \qquad (S6)$$

where \vec{r}_{ij} is the displacement vector between site *i* and *j* and r_{ij} is its length.

2 SUPPLEMENTARY TABLE: SIMULATION PARAMETERS

In this section, we provide all simulation parameters, relevant for this work.

2.1 General simulation parameters

General parameters concerning the device setup.

Parameter	Value
Device cross-section	$20 \times 20 \text{ nm}^2$
Periodic boundary conditions [x (transport axis), y , z]	[No, Yes, Yes]
Dielectric constant in all organic layers ϵ_r	4.0
Lattice constant a (cubic lattice)	1 nm
Temperature T	300 K
Number of kMC steps	50000000

Table S1. General Simulation parameters

2.2 Charge injection and transfer parameters

Parameters relevant for charge injection and charge transport. The numbers displayed in figure 1 of the main paper show the absolute values of mean HOMO and LUMO energy in each layer.

Parameter	Value	
Anode Fermi-level	$-5.4\mathrm{eV}$	
Cathode Fermi-level	$-2.4\mathrm{eV}$	
Energetic disorder σ for all organic materials (HOMO and LUMO)	0.1 eV	
Mean HOMO in HTL and ETL	$-5.8\mathrm{eV}$	
Mean LUMO in HTL and ETL	$-2.0\mathrm{eV}$	
Mean HOMO in EML (host)	$-5.8\mathrm{eV}$	
Mean LUMO in EML (host)	$-2.0\mathrm{eV}$	
Mean HOMO in EML (guest)	$-5.5\mathrm{eV}$	
Mean LUMO in EML (guest)	$-2.3\mathrm{eV}$	
Mean HOMO in HIL	$-5.6\mathrm{eV}$	
Mean LUMO in HIL	$-2.0\mathrm{eV}$	
Mean HOMO in EIL	$-5.8\mathrm{eV}$	
Mean LUMO in EIL	$-2.2\mathrm{eV}$	
Mean HOMO in HBL	$-6.3\mathrm{eV}$	
Mean LUMO in HBL	$-2.0\mathrm{eV}$	
Mean HOMO in EBL	$-5.8\mathrm{eV}$	
Mean LUMO in EBL	$-1.5\mathrm{eV}$	
Parameters for transfer integrals	see equations S1 and S2	
Max coupling electrode-organic $j_0^{\text{electrode}}$	$0.001\mathrm{eV}$	
Decay length for coupling electrode-organic $\delta_0^{\text{electrode}}$	$0.3\mathrm{nm}$	
Max coupling organic-organic j_0	$0.001\mathrm{eV}$	
Decay length for coupling organic-organic δ_0	0.1 nm	
Reorganization energy λ used in Marcus rates for charge transfer	$0.2\mathrm{eV}$	
a S2 Simulation monometers for shores injection and shores transmost	,	

 Table S2. Simulation parameters for charge injection and charge transport.

2.3 Excitonic parameters

Table S3 shows all excitonic rates and parameters.

	non-emitters	emitters
ISC-rate	$1 \times 10^3 \mathrm{s}^{-1}$	$1 \times 10^{14} \mathrm{s}^{-1}$
RISC-rate	$1 \times 10^2 \mathrm{s}^{-1}$	$1 \times 10^6 \mathrm{s}^{-1}$
thermal decay rate	$1 \times 10^5 \mathrm{s}^{-1}$	$1 \times 10^5 \mathrm{s}^{-1}$
Exciton reorganization energy	$0.3\mathrm{eV}$	$0.3\mathrm{eV}$
Excitonic binding energy	$0.8\mathrm{eV}$	$0.8\mathrm{eV}$
Singlet-Triplet gap	$0.3\mathrm{eV}$	$0.3\mathrm{eV}$
Radiative decay rate S1	$1 \times 10^8 \mathrm{s}^{-1}$	$1 \times 10^8 \mathrm{s}^{-1}$
Radiative decay rate T1	$1 \times 10^1 \mathrm{s}^{-1}$	$1 \times 10^6 \mathrm{s}^{-1}$
Max TTA rate	$1 \times 10^6 \mathrm{s}^{-1}$	$1 \times 10^{11} \mathrm{s}^{-1}$
Max TPQ rate	$1 \times 10^6 \mathrm{s}^{-1}$	$1 \times 10^{11} {\rm s}^{-1}$
Parameters for Dexter transfer integrals	see equation S3	
Max Dexter coupling j_0^{Dexter}	$0.0001\mathrm{eV}$	$0.0001\mathrm{eV}$
Decay length for Dexter coupling δ_0	$0.1\mathrm{nm}$	$0.1\mathrm{nm}$

 Table S3.
 Additional parameters for the excitonics.

3 SUPPLEMENTARY FIGURES

Figure S1. Charge carrier profiles of all three device architectures with different cross-section. The layer thicknesses are identical to the layer thicknesses in figure 3 of the main paper. The results indicate that a cross section of 20×20 nm² is sufficient to qualitatively capture the charge carrier distributions.