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This appendix details the heart and cardiovascular model equations and parameters. The run-time 

environment of the model is MATLAB 2021b. A release of the model codes can be found at DOI: 

10.5281/zenodo.8248116 and all updates can be found at https://github.com/sallakim/ventricular-

interdependence-simulations.  

Cardiac Model: Geometry  

The geometry of the wall segments is represented in terms of the axial, 𝑥𝑚,𝑖, and radial, 𝑦𝑚, midwall 

displacements such that  
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where 𝑉𝑚,𝑖, 𝐶𝑚,𝑖, and 𝐴𝑚,𝑖 are the midwall volumes, curvatures, and areas. Note that for the LW the radius 

of curvature has a negative value. For simplicity, the dimensionless ratio  
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is established, which is related to the ratio of wall thickness to the radius of curvature.  

Cardiac Model: Sarcomere mechanics  

The time-dependent sarcomere length, 𝐿𝑖, is modeled as a passive element in parallel with a series 

combination of a contractile element and series elastic element. 𝐿𝑖 (μm) is given by 

𝐿𝑖 = 𝐿𝑟𝑒𝑓𝑒𝜀𝑖 , (A5) 

where 𝐿𝑟𝑒𝑓 (μm) is the reference sarcomere length at zero strain, and 𝜀𝑖 is the myofiber strain formulated 

as  
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Note that 𝐿𝑖 is 𝐿𝑟𝑒𝑓 for isometric contractions. The length of the contractile element of the sarcomere, 𝐿𝑐,𝑖, 

is the solution to the differential equation  
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(A7) 

where 𝐿𝑠𝑒,𝑖𝑠𝑜 (μm) is the isometrically stressed series elastic element length and 𝑣𝑚𝑎𝑥 (μm s-1) is the 

sarcomere shortening velocity at zero load, and both are constants (Table 2).  

Cardiac Model: Ventricular chamber pressure  

The tension (𝑇𝑚,𝑖, kPa m) developed at the midwall junction is derived from myofiber stress and wall 

segment geometry according to Lumens et al. given as 
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where 𝜎𝑖 (kPa) is the total stress (Equation 1). The axial (𝑇𝑥,𝑖, kPa m) and radial (𝑇𝑦,𝑖, kPa m) midwall 

tension components are   
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By the Law of Laplace, ventricular chamber pressures are then 

𝑃𝐿𝑉 =  −
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𝑦𝑚
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Cardiac Model: Force and volume balance   

The tensions in the axial and radial directions are balanced such that  

0 = 𝑇𝑘,𝐿𝑊 + 𝑇𝑘,𝑆𝑊 + 𝑇𝑘,𝑅𝑊, (A12) 

where 𝑘 = 𝑥  or 𝑦. The ventricular volumes are balanced such that  

0 = −𝐸𝐷𝑉𝐿𝑉 − 0.5𝑉𝑤,𝐿𝑊 − 0.5𝑉𝑤,𝑆𝑊 + 𝑉𝑚,𝑆𝑊 − 𝑉𝑚,𝐿𝑊       and  (A13) 

0 = 𝐸𝐷𝑉𝑅𝑉 − 0.5𝑉𝑤,𝑅𝑊 − 0.5𝑉𝑤,𝑆𝑊 + 𝑉𝑚,𝑆𝑊 − 𝑉𝑚,𝑅𝑊. (A14) 

Circulation Model: Volume Distribution  

Circulation model compartmental volumes are scaled by the TBV using blood volume fractions, 𝑑𝑗, based 

on (Jones et al. 2021; Marquis et al. 2018) and adapted from (Beneken 1979) as 𝑉0,𝑗 = 𝑑𝑗TBV where 𝑗 =

𝐿𝑉, 𝑅𝑉, 𝑆𝐴, 𝑆𝑉, 𝑃𝐴, and 𝑃𝑉.  Blood volume fractions are listed in Table 3. The volume in the four vascular 

compartments (𝑆𝐴, 𝑆𝑉, 𝑃𝐴, and 𝑃𝑉) is the sum of the unstressed (𝑉𝑢,𝑗, mL) and stressed (𝑉𝑠,𝑗, mL) volumes 

as  𝑉0,𝑗 =  𝑉𝑢,𝑗 + 𝑉𝑠,𝑗, where the unstressed volume is the maximal volume of blood for which the 

compartment experiences zero pressure on its wall and the stressed volume is the volume beyond the 

unstressed volume to raise compartment pressure above zero. The stressed volume is a percentage of the 

unstressed volume, that is, 𝑉𝑠,𝑗 = 𝑏𝑗 𝑉𝑢,𝑗. Unstressed volume ratios are listed in Table 3.  

Circulation Model: Chamber Pressure Scaling  

We use nominal healthy pressures (denoted by a hat) from (Boron 2016) for each model compartment (listed 

in Table 3) which are used in the calculation of resistances and compartmental compliances and chamber 

elastances. To ensure the model predictions are subject-specific, first we use the chamber data from Table 

1 and let �̂�𝑚,𝐿𝑉 = EDP𝐿𝑉, �̂�𝑀,𝐿𝑉 = ESP𝐿𝑉, �̂�𝑚,𝑅𝑉 = EDP𝑅𝑉, and �̂�𝑀,𝑅𝑉 = ESP𝑅𝑉. Then we scale the 

circulation model compartments by the nominal healthy systemic systolic (�̂�𝑀,𝑆𝐴 = 120 mmHg) diastolic 

(�̂�𝑚,𝑆𝐴 = 80 mmHg) blood pressures, that is, minimum (𝑛𝑚,𝑗) and maximum (𝑛𝑀,𝑗) blood pressure scalars 

are 

𝑛𝑀,𝑗 =
�̂�𝑀,𝑗

�̂�𝑀,𝑆𝐴

 and 𝑛𝑚,𝑗 =
�̂�𝑚,𝑗
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.   
(A15) 

Compartmental nominal pressures are recapitulated given systemic arterial pressure data (SBP̅̅ ̅̅ ̅̅   and DBP̅̅ ̅̅ ̅̅  ) 
as in Table 1, so  

�̂�𝑀,𝑗 = 𝑛𝑀,𝑗 SBP̅̅ ̅̅ ̅̅    and     �̂�𝑚,𝑗 = 𝑛𝑚,𝑗 DBP̅̅ ̅̅ ̅̅ ̅. (A16) 

Circulation Model: Compliance and Resistance   

We approximate compartmental compliances (𝐶𝑗, mL mmHg-1) and intercompartmental resistances (𝑅𝑗, 

mmHg s mL-1) based on stressed volumes and maximum pressures. That is, 𝐶𝑗 is the ratio of the maximal 

compartmental stressed volume (𝑉𝑖,𝑠) to the estimated systolic compartmental pressure (𝑃𝑀,𝑗, mmHg)  



𝐶𝑗 =
𝑉𝑠,𝑗

𝑃𝑀,𝑗
. 

(A17) 

𝑅𝑗 is the ratio of the pressure drop across the resistance to the CO.  Here, the pressure drop is defined as the 

difference between the max systolic pressure in the arterial compartment preceding the resistance (𝑃𝑀,𝑗, 

mmHg) and the mean pressure (denoted by a bar) from the venous compartment following the resistance 

(𝑃𝑚,𝑗+1, mmHg), i.e.,  

𝑅𝑗 =
𝑃𝑀,𝑗 − 𝑃𝑏𝑎𝑟,𝑗+1

CO
. 

(A18) 

The mitral and tricuspid valve resistances are similarly computed as a pressure difference but is instead the 

pressure difference is between the mean pressure of the preceding venous compartment and the minimum 

resistance of the following ventricular compartment.  

Circulation Model: Model Equations  

The circulation model is formulated such that the circulating volume is the sum of the stressed volume for 

all compartments. Volume is conserved by formulating differential equations using Kirchhoff’s law as 

d𝑉𝑠,𝑗

d𝑡
 = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 , 

(A19) 

where 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 are the time-dependent flows in and out of each compartment. For the arterial 

compartments, the chamber pressure has a linear relationship with its chamber volume with the 

compliance (𝐶𝑗, mL mmHg-1) and transmural resistance (𝑅𝑡,𝑗, mmHg s mL-1), defined above, as  

𝑃𝑆𝐴 =
𝑉𝑠,𝑆𝐴

𝐶𝑆𝐴
+ (𝑄𝑎 − 𝑄𝑆𝐴)𝑅𝑡,𝑆𝐴 

(A20) 

where 𝑄𝑎 and 𝑄𝑆𝐴 are the blood flows across the aortic valve and systemic resistance, respectively. The 

remaining vascular compartments have linear pressure-volume relationships given by  

𝑃𝑃𝐴 =
𝑉𝑠,𝑃𝐴

𝐶𝑃𝐴
,  𝑃𝑆𝑉 =

𝑉𝑠,𝑆𝑉

𝐶𝑆𝑉
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𝑉𝑠,𝑃𝑉

𝐶𝑃𝑉
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Flows across the systemic and pulmonary resistances are formulated using Ohm’s Law as  

𝑄𝑆𝐴 =
𝑃𝑆𝐴 − 𝑃𝑆𝑉

𝑅𝑆𝐴
   and   𝑄𝑃𝐴 =

𝑃𝑃𝐴 − 𝑃𝑃𝑉

𝑅𝑃𝐴
, 

(A22) 

where 𝑅𝑆𝐴 (mmHg s mL-1) and 𝑅𝑃𝐴 (mmHg s mL-1) are the systemic and pulmonary resistances, 

respectively, and 𝑄𝑃𝐴 (mL s-1) is the pulmonary arterial flow. Flows through the aortic (𝑄𝑎, mL s-1), mitral 

(𝑄𝑚, mL s-1), pulmonary (𝑄𝑝, mL s-1), and tricuspid (𝑄𝑡, mL s-1) valves are modeled as diodes such that 

only forward flow through the valves is permitted, and the valves open and close instantaneously given a 

threshold pressure as  

𝑄𝑙 = max (
𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡

𝑅𝑙
, 0), 

(A23) 

for 𝑙 = 𝑚, 𝑎, 𝑡, or 𝑝 and 𝑅𝑙 (mmHg s mL-1) is the resistance of the valve. Transmural and valve resistance 

parameters are listed in Table 2.  

Derivation of 𝚪  

In Equations 11 and 12 we calculate the chamber pressure, 𝑃𝑖, in terms of the wall stress, 𝜎𝑖, and Γ, which 

is a term that encompasses the geometric relationship, 𝑧𝑖, and summarizes the relationship of the chamber 



pressure to the wall stress. To derive this, we use the Laplace’s Law, which states that at a given ventricular 

chamber pressure (𝑃𝑖), we have  

𝑃𝑖 𝑦𝑚

2
= 𝑇𝑥,𝑖. 

(A24) 

Substituting Equations A8 and A9, 

𝑃𝑖  𝑦𝑚

2
=

2 𝑥𝑚,𝑖 𝑦𝑚

𝑥𝑚,𝑖
2 + 𝑦𝑚

2  ( 
𝑉𝑤,𝑖

2 𝐴𝑚,𝑖
 (1 +

1

3
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1

5
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Substituting Equation A2,  

𝑃𝑖 𝑦𝑚
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=   𝐶𝑚 𝑦𝑚  ( 
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3
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5
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Combining terms and substituting Equation A4, we have  

𝑃𝑖  𝑦𝑚

2
=  −

1

3
 𝑧𝑖  𝑦𝑚 (1 +

1

3
𝑧𝑖

2 +
1
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𝑧𝑖

4) 𝜎𝑖. 
 

Finally, eliminating 𝑦𝑚 and solving for pressure yields  

𝑃𝑖 =  −
2

3
 𝑧𝑖 (1 +

1

3
𝑧𝑖

2 +
1

5
𝑧𝑖

4) 𝜎𝑖. 
(A25) 

Then,  

Γ =  −
2

3
 𝑧𝑖 (1 +

1

3
𝑧𝑖

2 +
1

5
𝑧𝑖

4). 
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Klotz et al. Single-Beat Estimation of the EDPVR  

From (Klotz et al. 2006), given a single-beat measurement of the EDP and EDV, the EDPVR is 

approximated as  

EDP =  𝛼 EDV𝛽 , (A27) 

where  

𝛼 =
30

𝑉30
𝛽

    and   𝛽 =
ln (

EDP
30 )

ln (
EDV
𝑉30 )

.  

(A28) 

for 𝑉0 (mL) and 𝑉30 (mL) the volumes at which the EDP is ~0 and 30 mmHg, respectively. To approximate 

𝑉0 and 𝑉30, we have  

𝑉0 = EDV (0.6 − 0.006 EDP) (A29) 

and  

𝑉30 = 𝑉0 +
EDV − 𝑉0

(
EDP
𝐴𝑛

)
1/𝐵𝑛

, 
(A30) 

where 𝐴𝑛 =  28 (mmHg) and 𝐵𝑛 = 3 (unitless).  

The EDVs were normalized as follows for the normalized EDPVR  

EDV𝑛 =
(EDV − 𝑉0)

(𝑉30 − 𝑉0)
. 

(A31) 
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