The unequal functional redundancy of the Arabidopsis INCURVATA11 and CUPULIFORMIS2 genes is not dependent on genetic background

Riad Nadi, Lucía Juan-Vicente, Eduardo Mateo-Bonmatí*, and José Luis Micol

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain

*Current adress: Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, 28223 Pozuelo de Alarcón, Madrid, Spain.

Supplementary Figures and Tables

Supplementary Material not included in this file: Supplementary Table S2

		A Feature	es of sgRNA and its target	
sgRNA name: ICU11_sgRNA1		name: ICU11_sgRNA1		
sgRNA sequence: GCGAGGCAAGATTGAAGCTTCGG		sequence: GCGAGGCAAGATTGAAGCTTCGG		
	Target location: Chr1:8127046. AT1G22950, first exon			
		Target strand: complementary		
		sgRNA	predicted off-targets: MM(0):0, MM(1):0, MM(2):0, MM(3):0, MM(4):2	
в		C G A G C C	T C C T C T G G A A A C G G C G A G G C A A G A T T G A A G C T T C G	G A G A A C C C C T A A T
	Col-0		MANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAA
	T ₁ mutant in a S96 background		MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AMANAMAN
	T ₂ icu11-4 mutant		MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MAMMAM
	T ₂ icu11-7 mutant	AAAA	man mannanananan man	MMMM
-	Γ ₁ mutant in a Col-0 background		MANA AMANA AMANA AMANA	Unalimatia
	T ₂ <i>icu11-5</i> mutant	MAA	Manahamahamahamahamahamahamahamahamahamah	Almana
	T ₂ <i>icu11-6</i> mutant		manamananan	AAAAAAA
С	ICU11-4 ICU11-6 ICU11-7 ICU11-5 ICU11	1 MCNO 1 MCNO 1 MCNO 1 MCNO 1 MCNO	QTPLRSMALDSSGKQPEQQQQQQPRASSGNGEARFFGEPLMK QTPLRSMALDSSGKQPEQQQQQQPRASSGNGEARLNFGEPLM QTPLRSMALDSSGKQPEQQQQQQPRASSGNGEARLNFGEPLM QTPLRSMALDSSGKQPEQQQQQQPRASSGNGEARL MLRRTPN	NMSLRTMKIYLWTIV KNMSLRTMKIYLWTI KNMSLRTMKIYLWTI EEHEPENYEDLPLDY
	ICU11-4 ICU11-6 ICU11-7 ICU11-5 ICU11	61 LICS 61 VILC 61 VILC 	SPLISVTYLSSFSIPHESIKLVS CSPLISVTYLSSFSIPHESIKLVS	RHKEYRDKTMSSYOR
		01 01 01		

Supplementary Figure S1. Design and effects of the CRISPR/Cas9 mutagenesis of *ICU11*. (A) Details of the *ICU11* sgRNA1 target. The PAM sequence is shown in red. On-target mutation efficiency was calculated using the "Rule Set 2" scoring model, which provides values ranging from 0 to 100 (Doench et al., 2016). Possible off-target events are represented according to the number of mismatches [MM (number)]. (B) Electropherograms of the *ICU11* sgRNA1 target site in wild-type plants, and T_1 and T_2 transgenic plants. The gray, magenta, and orange shaded areas indicate chimeric, deletion, and insertion mutations, respectively. (C) Multiple amino acid sequence alignment of the predicted proteins translated from wild-type and CRISPR/Cas9 alleles showing that all the latter produce truncated proteins. Identical and similar residues are shaded in black and gray, respectively. Numbers indicate residue positions.

A Details of two putative off-targets of ICU11 sgRNA1

В

Supplementary Figure S2. Testing of two putative CRISPR/Cas9 off-targets in the new *icu11* mutant lines. (A) Off-targets were found using Cas-OFFinder, a bioinformatic tool developed by Bae et al. (2014). Mismatches are shown in red, with the first nucleotide of the PAM sequence (NGG) is in blue. (B) Sanger sequencing electropherograms of putative off-targets in T_3 mutant and wild-type plants. The gray shaded area corresponds to the putative off-target sequence.

Purpose	Oligonucleotide name(s)	Oligonucleotide sequences $(5' \rightarrow 3')$		
		Forward primer (L or F)	Reverse primer (R)	
Genotyping	ICU11-Off-target1_F/R	TGGTGGGTTTGGTTTGTCTC	CTCGGTCATTGGAGCAACTT	
	ICU11-Off-target2_F/R	TGAGTCTGGAAGCAGGAAGG	AATGGGCAAATCAGAGAGTCC	
	At1g22950_1F/R	ACCCTAACCTCTCAAACAAACCA	AGACTTTGTTAACCCAATCCGAC	
	At1g22950_4F/R	CCTCTCAAACAAACCATCATCA	CGCTCAGTATCAGGGGAATATC	
	SAIL_1215_B02_L/R	GAGCGATAACAGTGAGCTTGG	GACATTTTCAAACCATTCATGC	
	SAIL_658_E12_L/R	AGAGGCAAGAGACGAAAAAGC	CCTTTGAGCCTGTAGCATCAG	
	SAIL_621_G08_L/R	TGAGAGCGAAAGCTTTCATTC	AACAAATGACTGGAGCAGAGC	
	gis-5_F/R	GAAGCAAGAACAGGTTTCTATG	AGCTAGTTACACTCGAGGATA	
	icu2-1_F/R	TGTTGAAGGAGGTCAGTTATTCT	CACAAGTGTTTTGGATGACTGAA	
	clf-2_F/R	ATGGCGTCAGAAGCTTCGCC	CTGGACCTCTCTCCCGC	
	tfl2-2_F/R	TATCAGCGGTGATCGGTGTG	CGCCGTAATTCTCCCGGTAA	
	ebs-1_F/R	TGAAGGTGTGAACAATGCAT	GAAAACTCGACCTGGTGTCG	
	fas1-1_F/R	TGAGCTGTTCTTCTGCATCATG	ACTATGGTAGCTGTGAAGAGTG	
	AT5G51230_1F/R	TGTAATGGTTCAGAGATCAATAGAA	GTCCGTGCAATCTTGAGAATG	
	SALK_131712_L/R	CAGAAGAAGATCGTCCGAGTG	TGAACTTCCCCACTCTTCATG	
	SALK_056440_L/R	TGGTCAGATGGGCTAGAATTG	AACGCGTTGCTGTAGAAACTC	
	SAIL_826_A06_L/R	AGCAGCAGAAGAAGAAGCATG	TTTGGCCTACAAAGACACCAG	
	SALK_021316_L/R	GAGCCGTCTCATCAAACTGAC	TTGCAGGAGCAAATATGGAAC	
	SALK_150863_L/R	AGATCGCTTCCAGAGTTAGCC	TTGTCGCAAAAAGCAAAAGAG	
	SAIL_223_F05_L/R	GGATCAGCCAAAAGGTTAAGG	TCATTCACTTTGCATCACTCG	
	SAIL_809_E03_L/R	GCGTGTACCAGTTTCAAGGAG	TAAAGAGCCCAGTTGTGAAGC	
	SALK_045303_L/R	CCAGTTAAGGACAGAACACCG	TCGTCTTTCGATCAAATCCAC	
	SALK_022363_L/R	ATCAATGTGGCATCTAGTGGC	ACCCGCCTCTTCTTCATCTAC	

Supplementary Table S1. Primer sets used in this work

Purpose	Oligonucleotide name(s)	Oligonucleotide sequences $(5' \rightarrow 3')$		
		Forward primer (L or F)	Reverse primer (R)	
Genotyping	SAIL_97_E06_L/R	CTTTCCCAGTTTTTACTGCCC	AATCACTCGCTTCTTCCACTG	
	SALK_149002_L/R	AATGAAAGCATGCGGATACAC	TCCGTGTTGACTGGAAAGATC	
	SALK_130607_L/R	TTTCTCTTGTCCGGTGAAATG	CCTGCAACAATCAGTGTGATG	
	SAIL_240_H01_L/R	TTGAGATGAATCTGGAGACCG	AAACGACGACGTATTGGAGTG	
	SALK_149692_L/R	TCTTGTGACAGGTGCAACTTG	AAACAAAGCTAGGCACAAGGC	
	SALK_080380_L/R	AGGGAACATGTCATCCATGAG	AGGGAGAATCTGAGAACCTGC	
	SALK_027726_L/R	ATGGTGTGCGAATCTATGACC	ACGGAGAGGAAAGCTCAAGAC	
	LB1 ¹	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC		
	LbB1.3 ²	ATTTTGCCGATTTCGGAAC		
	Cas9_F/R	GCTTCATCAAGAGACAGCTGG	GGACTTGCCCTTTTCCACTTT	
Cloning	ICU11_sgRNA1_F/R	ATTGCGAGGCAAGATTGAAGCTT	AAACAAGCTTCAATCTTGCCTCGC	

Supplementary Table S1 (continued). Primer sets used in this work

^{1,2}These primers were used for genotyping ¹SAIL and ²SALK lines, and their sequences were taken from ¹Sessions et al. (2002) and ²T-DNA Primer Design (http://signal.salk.edu/tdnaprimers.2.html).

SUPPLEMENTARY REFERENCES

- Bae, S., Park, J., and Kim, J.S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. *Bioinformatics* 30, 1473-1475. doi: 10.1093/bioinformatics/btu048
- Cao, X., and Jacobsen, S.E. (2002). Role of the *Arabidopsis DRM* methyltransferases in de novo DNA methylation and gene silencing. *Curr. Biol.* 12, 1138-1144. doi: 10.1016/s0960-9822(02)00925-9
- Chan, S.W., Henderson, I.R., Zhang, X., Shah, G., Chien, J.S., and Jacobsen, S.E. (2006).
 RNAi, DRD1, and histone methylation actively target developmentally important non-CG
 DNA methylation in *Arabidopsis*. *PLOS Genet*. 2, e83. doi: 10.1371/journal.pgen.0020083
- Deng, W., Liu, C., Pei, Y., Deng, X., Niu, L., and Cao, X. (2007). Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of *FLOWERING LOCUS C* in Arabidopsis. *Plant Physiol.* 143, 1660-1668. doi: 10.1104/pp.106.095521
- Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H.W., Listgarten, J., and Root, D.E. (2016).
 Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat. Biotechnol.* 34, 184-191. doi: 10.1038/nbt.3437
- Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.L., Zhang, X., Golic, K.G., Jacobsen, S.E., and Bestor, T.H. (2006). Methylation of tRNA^{Asp} by the DNA methyltransferase homolog Dnmt2. *Science* 311, 395-398. doi: 10.1126/science.1120976
- Jacob, Y., Feng, S., Leblanc, C.A., Bernatavichute, Y.V., Stroud, H., Cokus, S., Johnson, L.M., Pellegrini, M., Jacobsen, S.E., and Michaels, S.D. (2009). ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. *Nat. Struct. Mol. Biol.* 16, 763-768. doi: 10.1038/nsmb.1611
- Kim, J.S., Lim, J.Y., Shin, H., Kim, B.G., Yoo, S.D., Kim, W.T., and Huh, J.H. (2019). ROS1dependent DNA demethylation is required for ABA-inducible *NIC3* expression. *Plant Physiol.* 179, 1810-1821. doi: 10.1104/pp.18.01471
- Latrasse, D., Benhamed, M., Henry, Y., Domenichini, S., Kim, W., Zhou, D.X., and Delarue,M. (2008). The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. *BMC Plant Biol.* 8, 121. doi: 10.1186/1471-2229-8-121
- Lin, W., Sun, L., Huang, R.Z., Liang, W., Liu, X., He, H., Fukuda, H., He, X.Q., and Qian, W. (2020). Active DNA demethylation regulates tracheary element differentiation in *Arabidopsis. Sci. Adv.* 6, eaaz2963. doi: 10.1126/sciadv.aaz2963
- Pien, S., Fleury, D., Mylne, J.S., Crevillen, P., Inzé, D., Avramova, Z., Dean, C., and Grossniklaus, U. (2008). ARABIDOPSIS TRITHORAX1 dynamically regulates *FLOWERING LOCUS C* activation via histone 3 lysine 4 trimethylation. *Plant Cell* 20, 580-588. doi: 10.1105/tpc.108.058172

- Saze, H., Mittelsten Scheid, O., and Paszkowski, J. (2003). Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. *Nat. Genet.* 34, 65-69. doi: 10.1038/ng1138
- Sessions, A., Burke, E., Presting, G., Aux, G., Mcelver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J.D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M., and Goff, S.A. (2002). A high-throughput Arabidopsis reverse genetics system. *Plant Cell* 14, 2985-2994. doi: 10.1105/tpc.004630
- Woo, H.R., Dittmer, T.A., and Richards, E.J. (2008). Three SRA-domain methylcytosinebinding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. *PLOS Genet.* 4, e1000156. doi: 10.1371/journal.pgen.1000156
- Yu, C.W., Chang, K.Y., and Wu, K. (2016). Genome-wide analysis of gene regulatory networks of the FVE-HDA6-FLD complex in *Arabidopsis*. *Front. Plant Sci.* 7, e555. doi: 10.3389/fpls.2016.00555
- Yuan, L., Wang, D., Cao, L., Yu, N., Liu, K., Guo, Y., Gan, S., and Chen, L. (2020). Regulation of leaf longevity by DML3-mediated DNA demethylation. *Mol. Plant* 13, 1149-1161. doi: 10.1016/j.molp.2020.06.006
- Yun, J.Y., Tamada, Y., Kang, Y.E., and Amasino, R.M. (2012). ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2 is required for the winter-annual habit of *Arabidopsis thaliana*. *Plant Cell Physiol*. 53, 834-846. doi: 10.1093/pcp/pcs021
- Zheng, X., Pontes, O., Zhu, J., Miki, D., Zhang, F., Li, W.X., Iida, K., Kapoor, A., Pikaard, C.S., and Zhu, J.K. (2008). ROS3 is an RNA-binding protein required for DNA demethylation in *Arabidopsis*. *Nature* 455, 1259-1262. doi: 10.1038/nature07305