Acetylcholine facilitates localized synaptic potentiation and location specific feature binding

Yihao Yang¹, Victoria Booth^{2*}, Michal Zochowski^{3*},

¹Department of Physics, University of Michigan, Ann Arbor, MI, United States of America

²Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America

³Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States of America

*Corresponding authors

E-mail: michalz@umich.edu (MZ) and vbooth@umich.edu (VB)

Supplemental Figure 1

Supplementary Figure 1. Network dynamics in the absence of plasticity. (A-D) Raster plots (black: E-cells; green: I-cells) of 300 ms for the example cases E, F, G, H with 5 Hz noise as in the results shown in the 3^{rd} column of Figure 3 E,F,G,H, except without STDP. The g_{Ks} level and DC input for module 2 are fixed at g_{Ks} =0.6 mS/cm² and DC=2.0 μ A/cm², respectively. (A) The g_{Ks} level and DC input for module 1 are 0.3 mS/cm² and 0.5 μ A/cm². (B) The g_{Ks} level and DC input for module 1 are 0.6 mS/cm² and 3.0 μ A/cm² respectively. (C) The g_{Ks} level and DC input for module 1 are 1.2 mS/cm² and 2.0 μ A/cm² respectively. (D) The g_{Ks} level and DC input for module 1 are 1.2 mS/cm² and 3.5 μ A/cm² respectively.