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1 APPENDIX

1.1 Notation

For an integer n let [n] = {1, . . . , n}. Let Rn be the space of n-dimensional real vectors identified with
column vectors, Rn×m the space of n×m matrices. Furthermore let Sn be the space of n× n dimensional
real symmetric matrices and Sn

+, S
n
++ positive-semidefinite and positive-definite matrices n×n dimensional

respectively. Let Rn
+,Rn

++ be the space of n-dimensional real vectors with all components being non-
negative and positive respectively. Let △n be the set of vectors in Rn

+ summing to one (the set of probability
vectors). We let boldface denote matrices / vectors, such as X and let XT be the transpose of X . Let
1n,0n be the n-dimensional vectors of all ones and zeros and let 1n,m,0n,m be the n ×m-dimensional
matrices of ones and zeros respectively. We will drop the subscript when the dimensions are clear from
context. For two vectors x,y ∈ Rn let ⟨x,y⟩ = xTy =

∑n
i=1 xiyi and let ∥x∥p = (

∑n
i=1 x

p
i )

1/p

which is a true norm when p ≥ 1, with ∥x∥∞ = max ((|xi|)ni=1). For two matrices X,Y ∈ Rn×m let
⟨X,Y ⟩ =

∑n,m
i,j XijYij be the Frobenius inner product and ∥X∥FB be the induced norm, the Frobenius

norm and let X ⊙ Y be the hadamard product, (X ⊙ Y )i,j = Xi,jYi,j . Let X ∈ Rn×n then the trace
is define to be Tr(X) =

∑n
i=1Xii and if X can be eigendecomposed with eigenvalues (λi)

n
i=1 then

Tr(X) =
∑n

i=1 λi and det(X) =
∏n

i=1 λi. Let X ∈ Rn×m and I = {Ij : j = 1, . . . , |I|} be a partition
of [n] and J = {Jj : j = 1, . . . , |J |} be a partition of [m]. We let XIj be the rows corresponding to Ij

stacked as an R|Ij |×m matrix and XJj be the columns corresponding to Jj stacked as an Rn×|Jj | matrix.
Let H denote an RKHS and K the corresponding kernel.

We will use capital letter to denote a random variable and the lower-case for the observation, X, x. Let
I(E) denote the indicator variable of the event E. For a family of distributions ρθ parameterized by θ ∈ Θ
with a pdf we write pρ(y; θ) for the value of the pdf of ρθ at y. Below is a table of distributions we will
use together with some information about these distributions. Let B(α) =

∏n
i=1 Γ(αi)/Γ(

∑n
i=1 αi) be the

beta-function.

1.2 On a flaw in the cSKAT derivation for the extended setting

In this section we detail a flaw in the derivation of cSKAT extended to the general case in (Posner et al.,
2020, Appendix A.1). We state it in terms of our notation.

The flaw can be found in (Posner et al., 2020, Eq. 11 and Eq. 12) and the derivation is found in (Posner
et al., 2020, A.1), which is due to not using the right denominator ∥λ0∥2 in the objective when going
beyond the continuous case and / or having non-genetic covariates (note that we cancel out the ϕ̂0 terms
since they occur in both the numerator and denominator). As stated on (Posner et al., 2020, p. 4) the
ϕ̂0 · λ0 = eig(P

1/2
0 KP

1/2
0 ). For the continuous case with no non-genetic covariates, P0 can be shown

to be the centering matrix, and assuming that kernel matrix K is centered, the objective reduces to
yTKy/∥K∥FB since ∥λ0∥2 = ∥K∥FB in this case as 1) K is centered and so P

1/2
0 KP

1/2
0 = K and 2)

P0 is the centering matrix (which is only true in this particular case). However, when including the V or
X terms in P0, P0 is no longer the centering matrix and so the numerator and denominator need to change
as follows; 1) yTKy turns into rTKr where r is the residual vector under the null-hypothesis and 2)
∥λ0∥2 is no longer equal to ∥K∥FB but to ∥P 1/2

0 KP
1/2
0 ∥FB . Point 2) is flawed in their analysis since

they use ∥K∥FB instead of ∥P 1/2
0 KP

1/2
0 ∥FB which leads to the wrong objective.
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1.3 Theorems

THEOREM 1. Assume a weighted linear kernel Kw. Given a dataset D = (X,G,y) and a GLM model
η(µ(x, g)) = α0 + αTx + βTg giving rise to residuals r = y − µ̂0, variance matrix V = diag(v), null
projection matrix P0 and matrix A = P

1/2
0 KP

1/2
0 /ϕ̂0 where K = GWGT and ϕ̂0 is the null maximum

likelihood deviance parameter. Let B = GT(V − V X(XTV X)−1XTV )G, then

J(w) =
wTs

∥w∥B⊙B
(1)

and
w∗ = argmax

w∈△p

J(w) ∝ argmin
z≥0

zT(B ⊙B)z − 2zTs. (2)

PROOF. Note that J(w) = rTKr/∥eig(P 1/2
0 KP

1/2
0 )∥2 cancelling out ϕ̂0. We first simplify the

numerator and denominator, starting with the numerator. We will use the identity Horn and Johnson (2012)

Tr(diag(v)M diag(u)NT) = vT(M ⊙N )u (3)

at several points in the proof.

First note that
rTKr = rTGWGTr = Tr(diag(w)GTr diag(1)(GTr)T) (4)

which by (3) is equal to wT(GTr ⊙GTr)1 = wTs. For the denominator we have

∥eig(P 1/2
0 KP

1/2
0 )∥22 = Tr((P

1/2
0 KP

1/2
0 )2) (5)

= Tr(P
1/2
0 KP0KP

1/2
0 ) (6)

= Tr(KP0KP0) (7)

= Tr(GWGTP0GWGTP0) (8)

= Tr(WBWB), (9)

which, since B ∈ Sp
+, is of the form required by (3) meaning that

∥eig(P 1/2
0 KP

1/2
0 )∥2 =

√
wT(B ⊙B)w = ∥w∥B⊙B, (10)

where since B is positive semi-definite (or positive definite) so is B ⊙B Styan (1973).

Combining the above, we have that

J(w) =
wTs

∥w∥B⊙B
. (11)

Finally, it can be seen that the results of Cortes et al. (2012) still applies and finding w∗ is equivalent to
solving the Quadratic Programme

z∗ = argmin
z≥0

zT(B ⊙B)z − 2zTs (12)
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and letting w∗ = z∗/∥z∗∥1.

DEFINITION 1 (Sub-exponential random variable, Wainwright (2019) Definition 2.7). A random variable
X with mean µ = EX is sub-exponential if there are non-negative parameters (ν, α) such that

E[exp(λ(X − µ))] ≤ exp(ν2λ2/2) for all |λ| ≤ 1/α, (13)

and we write this as X ∈ SE(ν, α).

LEMMA 2 (Scaled sub-exponential variable is sub-exponential). Let X be sub-exponential with
parameters (ν, α), then for any c > 0, cX is sub-exponential with parameters (cν, cα).

PROOF. Let µ = EX and let Y = cX . Then EY = cµ. Since X is sub-exponential it satisfies

E[exp(λ(X − µ))] ≤ exp(ν2λ2/2) for all |λ| ≤ 1/α.

Now,
E[exp(λ(Y − EY ))] = E[exp(cλ(X − µ)] ≤ exp(c2ν2λ2/2) for all |cλ| ≤ 1/α, (14)

since |cλ| ≤ 1/α ⇐⇒ |λ| ≤ 1/cα we are done.

LEMMA 3 (χ2
1 is sub-exponential, Wainwright (2019) Example 2.8). Let X be a χ2

1 random variable,
then X is sub-exponential with parameters (2, 4).

LEMMA 4 (Linear combination of sub-exponential random variables is sub-exponential, Wainwright
(2019) p. 29). Let (Xi)

n
i=1 be a sequence of sub-exponential random variables with parameters (νi, αi)

n
i=1

and means (µi)
n
i=1. Then X =

∑n
i=1(Xi − µi) is a sub-exponential random variable with parameters

(ν∗, α∗), with ν∗ =
√∑n

i=1 ν
2
i = ∥ν∥2 and α∗ = maxi=1(αi) = ∥α∥∞ where ν = (νi)

n
i=1 and α =

(αi)
n
i=1.

PROPOSITION 5 (Sub-exponential Tail Bound, Wainwright (2019) Prop. 2.9). Suppose that X is
sub-exponential with parameters (ν, α) with mean µ, then for any t ≥ 0

Pr(X − µ ≥ t) ≤

 exp
(
− t2

2ν2

)
, if 0 ≤ t ≤ ν2

α

exp
(
− t

2α

)
, if t > ν2

α

= exp

(
−1

2
min

(
t2

ν2
,
t

α

))
(15)

THEOREM 6 (cSKAT objective upper bounds the p-value). Assume a weighted linear kernel Kw. Given
a dataset D = (X,G,y) and a GLM model η(µ(x, g)) = α0 + αTx + βTg giving rise to residuals
r = y − µ̂0, variance matrix V = diag(v), null projection matrix P0 and matrix Ã = P

1/2
0 KP

1/2
0 , let
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λ̃(w)0 = eig(Ã), ℓp = ∥λ̃0(w)∥p, where p ∈ [1,∞], and q̃(w) = rTGWGTr, then

p0(q(w)) ≤


exp

(
−1

8

(
q̃(w)−ℓ1

ℓ2

)2
)
, if q̃(w) ∈ [ℓ1,

ℓ22
ℓ∞

+ ℓ1]

exp
(
−1

8

(
q̃(w)−ℓ1

ℓ∞

))
, if q̃(w) ≥ ℓ22

ℓ∞
+ ℓ1.

(16)

Let B = GT(V − V X(XTV X)−1XTV )G, and b = diag(B). If J(w) = wT(s−b)
∥w∥B⊙B

and wTs ≥ ℓ1.
If q̃(w) ≥ ℓ1 then

p0(q(w)) ≤ exp

(
−1

8
min

(
J(w), J(w)2

))
. (17)

PROOF. Let Q̃(w) =
∑

i=1 λ̃0(w)iYi =
∑

iXi where (Yi)i=1 are iid and distributed as Y1 ∼ χ2
1 and

thus (Xi)i are independent and Xi ∼ λ̃0(w)iχ
2
1.

The p-value of the model is given by

p0(q(w)) = Pr(QSKAT(w) ≥ q(w)) = Pr(Q̃(w) ≥ q̃(w)). (18)

We note the following,

1. µ̃ = EQ̃(w) =
∑

i λ̃0(w)iEχ2
1 = ∥λ̃0(w)∥1,

2. by Lemma 3 we know that χ2
1 ∼ SE(2, 4) and applying Lemma 2 Xi ∈ SE(2λ̃0(w)i, 4λ̃0(w)i)

and finally applying Lemma 4 we have that Q̃(w) ∈ SE(ν∗, α∗) where ν∗ = ∥λ̃0(w)∥2 and α∗ =
∥λ̃0(w)∥∞.

Call t = q̃(w)− µ̃, and denote by ℓp = ∥λ̃0(w)∥p, where p ∈ [1,∞], then applying Prop. 5 we have that

Pr(Q̃(w) ≥ q̃(w)) = Pr(Q̃(w)− µ̃ ≥ t) ≤

 exp
(
− t2

2ν2∗

)
, if 0 ≤ t ≤ ν2∗

α∗

exp
(
− t

2α∗

)
, if t > ν2∗

α∗
.

(19)

Writing out (19) explicitly, we see that the first case states that for q̃(w) ∈ [ℓ1,
ℓ22
ℓ∞

+ ℓ1], the p-value is

upper bounded by exp(−1
8(

q̃(w)−ℓ1
ℓ2

)2) while the second case states that for q̃(w) > ℓ22
ℓ∞

+ ℓ1 the p-value is

upper bounded by exp(−1
8(

q̃(w)−ℓ1
ℓ∞

)).

Then second statement is proved as follows. Since q̃(w) = wTs and similarly ℓ1 =

Tr(P
1/2
0 GWGTP

1/2
0 ) = Tr(WB) = wTb, both following by similar arguments as in (4), so that

q̃(w)− ℓ1 = wT(s− b). Following (10) we have that ℓ2 = ∥w∥B⊙B so

q̃(w)− ℓ1
ℓ2

=
wT(s− b)

∥w∥B⊙B
= J(w). (20)

Frontiers 4



Isak Falk et al. Kernel Learning for Rare Variants

Finally, since ℓ∞ ≤ ℓ2 we have that q̃(w)−ℓ1
ℓ2

≤ q̃(w)−ℓ1
ℓ∞

which means that for q̃(w) > ℓ22
ℓ∞

+ ℓ1 and so

exp

(
−1

8

(
q̃(w)− ℓ1

ℓ∞

))
≤ exp

(
−1

8

(
q̃(w)− ℓ1

ℓ2

))
= exp

(
−1

8
J(w)

)
, (21)

which in total shows that if q̃(w) > ℓ1 then

p0(q(w)) ≤ exp

(
−1

8
min

(
J(w), J(w)2

))
. (22)

1.4 Experimental Setup

For each of the hypothesis testing settings we use the UKBB WES dataset of the gene PARK7 resulting
in 200’643 patients or datapoints. The PARK7 gene has 462 variants. For each experiment we sample
without replacement n number of patients, where n is dependent on the situation. This means that for each
experiment we run, we get a new genetic and non-genetic covariance matrix of n rows and 462 columns
for the genetic matrix and 12 columns for the non-genetic matrix since we keep the columns sex, age
and the first 10 principal components from the full genetic matrix on the whole UKBB WES dataset.

Each setting is specified and generated by specifying the causal_ratio (which we set to 0.1) which is
ratio of causal variants in the gene, which is sampled with replacement according to the probability vector
generated from taking all of the MAF’s and mapping them through f(x) = x−0.5 and finally normalize
so that it sums to one. In this way we satisfy the common assumption that rarer variants are more often
causal. For the interaction term (if it is used) we have a parameter interaction_ratio (which we set
to 1.0 so all causal variants interact) which specify how many of the causal variants interact with other
variants and we also have a misspecification_factor which scales the final interaction matrix Γ
so that ∥β∥/∥Γ∥2 = misspecification_factor which we set to 1.0, which means we are severely
misspecified. For each causal variant, the beta coefficient of each causal variant SNP at index j is given
by − log10(MAFj) where MAFj is calculated from the full dataset, and the sign is flipped according to a
probability beta_random_sign_flip_prob. Finally, we use a link function to map from the mean
to the sampling of the output. For continuous output, this is just the identity link and for binary this is the
Bernoulli link function. We generate α, α0 from a standard multivariate Gaussian and are then normalized
to have norm 1.

For the interaction term, use pick a subset of the causal variants at random until interaction_ratio
has been chosen at random and each such variant interacts at random with one of the other variants in
the gene except for itself. The interaction term is added to the previously used α0, α, β and so that the
misspecified case does not change the linear terms used previously, but only add the interaction term.

For the continuous setting which corresponds to a Gaussian model, we set the noise variance to be σ2 = 4
which corresponds to an h2 (heritability) coefficient of 0.2 in this case.

As done in previous works (e.g. Posner et al. (2020)) we center all of the kernel matrices.
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