checkCIF/PLATON report

Structure factors have been supplied for datablock(s) I

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision:	Bi-N = 0.0418 A	Wavelength=	=0.29040
Cell:	a=4.9002(18)	b=9.458(4)	c=9.287(13)
Temperature:	293 K	beta=90	gamma=90
	Calculated	Reported	
Volume	430.4(6)	430.5(6)	
Space group	Pbcn	Pbcn	
Hall group	-P 2n 2ab	-P -2xab;-	-2
Moiety formula	Bi2 N2	?	
Sum formula	Bi2 N2	Bil Nl	
Mr	445.98	223.00	
Dx,g cm-3	13.765	13.763	
Z	8	16	
Mu (mm-1)	16.105	16.307	
F000	1440.0	1440.0	
F000 ′	1426.84		
h,k,lmax	10,19,19	7,14,9	
Nref	2101	437	
Tmin,Tmax		0.555,1.00	00
Tmin'			
Correction metho AbsCorr = MULTI-	od= # Reported T Lin -SCAN	mits: Tmin=0.555 Tma	ax=1.000
Data completene:	ss= 0.208	Theta(max) = 17.770	1
R(reflections)=	0.0640(254)		wR2(reflections) = $0.1290(.437)$
S = 1.230	Npar= 26	5	0.1200(107)

The	fol	lowin	g ALERTS	were	e ge	enerat	ed.	Each	AI	LERT	has	the	format
test-name_ALERT_alert-type_alert-level.													
Clic	k c	n the	hyperli	nks f	or	more	deta	ails	of	the	test		

Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full value Low . 0.400 Why?

Author Response: Multigrain sample in a diamond anvil cell (DAC). Aperture is limited by the DAC geometry.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 1.54Ang From Bil 4.61 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.79Ang From N1 4.43 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

DT A T Q 7 1	ATEDT 2	7	Chook	Colad	Pooid	Dong	1 16700	r Erom	M2	1	17	~7-	2
FLAIS/I_	_ALCKI_Z	_A	CHECK	Carcu	resiu.	Dens.	I.40AIIC	J LTOUU	꼬꼬스	4	• ⊥ /	ea-	J

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 0.88Ang From Bi2 3.99 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT971_ALERT_2_A Ch	ck Calcd Resid.	Dens.	1.23Ang From N1	3.88 eA-3
----------------------	-----------------	-------	-----------------	-----------

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 1.38Ang From N1 3.82 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT971_ALERT_2_A Check Calcd Resid. Dens. 1.17Ang From N1 3.76 eA-3

	Author Response: Multi between Bi and N and li	igrain sa mited co	mple in a DAC. Stron ompleteness.	ng electronic contrast
PLAT971_ALERT_2_	_A Check Calcd Resid.	Dens.	1.01Ang From Bil	3.74 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron completeness.	ng electronic contrast
PLAT971_ALERT_2	_A Check Calcd Resid.	Dens.	1.50Ang From N2	3.71 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron completeness.	ng electronic contrast
PLAT971_ALERT_2	_A Check Calcd Resid.	Dens.	1.03Ang From N2	3.69 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron ompleteness.	ng electronic contrast
PLAT971_ALERT_2	_A Check Calcd Resid.	Dens.	1.25Ang From N2	3.68 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron completeness.	ng electronic contrast
PLAT971_ALERT_2_	_A Check Calcd Resid.	Dens.	0.91Ang From Bil	3.60 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron ompleteness.	ng electronic contrast
PLAT971_ALERT_2	_A Check Calcd Resid.	Dens.	1.47Ang From N1	3.56 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron ompleteness.	ng electronic contrast
PLAT971_ALERT_2	_A Check Calcd Resid.	Dens.	1.57Ang From Bi2	3.55 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron ompleteness.	ng electronic contrast
PLAT972_ALERT_2_	_A Check Calcd Resid.	Dens.	1.24Ang From Bil	-5.36 eA-3
	Author Response: Multi between Bi and N and li	igrain sa mited co	ample in a DAC. Stron completeness.	ng electronic contrast

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.60Ang From Bi1 -4.74 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 1.12Ang From N1 -4.35 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 1.22Ang From Bi2 -4.30 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.74Ang From Bi2 -4.30 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.73Ang From Bil -4.27 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.95Ang From N2 -4.20 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.56Ang From Bi1 -3.99 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.53Ang From Bil -3.96 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_A Check Calcd Resid. Dens. 0.58Ang From Bi2 -3.94 eA-3

	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	C. Strong electronic contrast
PLAT972_ALERT_2_	_A Check Calcd Resid. Dens. 1.58Ang From	N1 -3.62 eA-3
	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	2. Strong electronic contrast
PLAT972_ALERT_2_	_A Check Calcd Resid. Dens. 0.78Ang From	N2 -3.61 eA-3
	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	C. Strong electronic contrast
PLAT972_ALERT_2_	_A Check Calcd Resid. Dens. 1.27Ang From	N1 -3.51 eA-3
	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	2. Strong electronic contrast
PLAT973_ALERT_2_	_A Check Calcd Positive Resid. Density on	Bil 5.04 eA-3
	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	C. Strong electronic contrast
PLAT973_ALERT_2_	_A Check Calcd Positive Resid. Density on	Bi2 3.87 eA-3
	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	C. Strong electronic contrast
PLAT975_ALERT_2_	_A Check Calcd Resid. Dens. 0.79Ang From	N1 . 4.43 eA-3
	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	C. Strong electronic contrast
PLAT976_ALERT_2_	_A Check Calcd Resid. Dens. 0.95Ang From	N24.20 eA-3
	Author Response: Multigrain sample in a DAC between Bi and N and limited completeness.	2. Strong electronic contrast

	Author Response: Multigrai Aperture is limited by the D	in sample in a diamond anvil cell AC geometry.	l (DAC).
PLAT921_ALERT_1	_B R1 in the CIF and FCF Di	ffer by	0.0068 Check
	Author Response: Both files JANA2006. Should be an int	were prepared using the same pather and program issue.	rogram -
PLAT926_ALERT_1	_B Reported and Calculated	R1 Differ by	0.0066 Check
	Author Response: Both files JANA2006. Should be an int	were prepared using the same p ernal program issue.	rogram -
PLAT971_ALERT_2	_B Check Calcd Resid. Dens.	1.02Ang From Bil	3.50 eA-3
	Author Response: Multigrain s between Bi and N and limited o	sample in a DAC. Strong electron completeness.	nic contrast
PLAT971_ALERT_2	_B Check Calcd Resid. Dens.	1.44Ang From N1	3.46 eA-3
	Author Response: Multigrain s between Bi and N and limited o	sample in a DAC. Strong electron completeness.	nic contrast
PLAT971_ALERT_2	_B Check Calcd Resid. Dens.	1.33Ang From N2	3.42 eA-3
	Author Response: Multigrain s between Bi and N and limited o	sample in a DAC. Strong electro completeness.	nic contrast
PLAT971_ALERT_2	_B Check Calcd Resid. Dens.	0.91Ang From N2	3.39 eA-3
	Author Response: Multigrain s between Bi and N and limited o	sample in a DAC. Strong electron completeness.	nic contrast
PLAT971_ALERT_2	_B Check Calcd Resid. Dens.	1.40Ang From Bil	3.38 eA-3
	Author Response: Multigrain s between Bi and N and limited o	sample in a DAC. Strong electro completeness.	nic contrast
PLAT971_ALERT_2	_B Check Calcd Resid. Dens.	0.92Ang From Bi2	3.35 eA-3
	Author Response: Multigrain s between Bi and N and limited	sample in a DAC. Strong electro completeness.	nic contrast

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.48Ang From N1 3.29 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.26Ang From Bil 3.27 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 1.33Ang From N1 3.26 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.00Ang From Bi2 -3.50 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.45Ang From N2 -3.50 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.61Ang From N1 -3.47 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.04Ang From N1 -3.29 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_B Check Calcd Resid. Dens. 0.76Ang From Bil -3.29 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.

PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.61Ang From Bi2 -3.28 eA-3

Author Response: Multigrain sample in a DAC. Strong electronic contrast
between Bi and N and limited completeness.

Author Response: Multigrain between Bi and N and limited	sample in a DAC. Strong electron completeness.	nic contrast					
PLAT972_ALERT_2_B Check Calcd Resid. Dens.	1.29Ang From N2	-3.23 eA-3					
Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.							
PLAT972_ALERT_2_B Check Calcd Resid. Dens.	0.39Ang From Bi2	-3.21 eA-3					
Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.							
PLAT972_ALERT_2_B Check Calcd Resid. Dens.	0.40Ang From N2	-3.17 eA-3					
Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.							
PLAT972_ALERT_2_B Check Calcd Resid. Dens.	0.99Ang From Bi2	-3.15 eA-3					
Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.							
PLAT972_ALERT_2_B Check Calcd Resid. Dens.	0.65Ang From Bi2	-3.07 eA-3					
Author Response: Multigrain sample in a DAC. Strong electronic contrast between Bi and N and limited completeness.							

PLAT972_ALERT_2_B Check Calcd Resid. Dens. 1.05Ang From Bi1 -3.25 eA-3

Alert level C				
PLAT041_ALERT_1_C Calc. and	Reported SumFormula	Strings Differ	Please	Check
PLAT051_ALERT_1_C Mu(calc) a	nd Mu(CIF) Ratio Diffe	ers from 1.0 by .	1.24	00
PLAT053_ALERT_1_C Minimum Cr	ystal Dimension Missir	ng (or Error)	Please	Check
PLAT054_ALERT_1_C Medium Cr	ystal Dimension Missir	ng (or Error)	Please	Check
PLAT055_ALERT_1_C Maximum Cr	ystal Dimension Missir	ng (or Error)	Please	Check
PLAT127_ALERT_1_C Implicit H	Iall Symbol Inconsiste	ent with Explicit -P	-2xab ; -	Check
PLAT148_ALERT_3_C s.u. on th	ne c – Axis is	(Too) Large	0.013	Ang.
PLAT906_ALERT_3_C Large K Va	lue in the Analysis of	Variance	6.939	Check
PLAT920_ALERT_1_C Theta(Max)	in CIF and FCF Diffe	er by	0.42	Degree
PLAT992_ALERT_5_C Repd & Act	ual _reflns_number_gt	Values Differ by	39	Check

Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type. PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 3 Info PLAT005_ALERT_5_G No Embedded Refinement Details Found in the CIF Please Do ! PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.500 Check PLAT092_ALERT_4_G Check: Wavelength Given is not Cu,Ga,Mo,Ag,In Ka 0.29040 Ang. PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 293 Check PLAT794_ALERT_5_G Tentative Bond Valency for Bi1 (III) 2.36 Info . PLAT794_ALERT_5_G Tentative Bond Valency for Bi2 (III) 2.32 Info PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do ! PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 3 Note PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 358 Note PLAT950_ALERT_5_G Calculated (ThMax) and CIF-Reported Hmax Differ 3 Units 5 Units PLAT951_ALERT_5_G Calculated (ThMax) and CIF-Reported Kmax Differ PLAT952_ALERT_5_G Calculated (ThMax) and CIF-Reported Lmax Differ. 10 Units PLAT956_ALERT_1_G Calculated (ThMax) and Actual (FCF) Hmax Differ 3 Units PLAT957_ALERT_1_G Calculated (ThMax) and Actual (FCF) Kmax Differ 5 Units PLAT958_ALERT_1_G Calculated (ThMax) and Actual (FCF) Lmax Differ. 10 Units PLAT961_ALERT_5_G Dataset Contains no Negative Intensities Please Check PLAT984_ALERT_1_G The Bi-f' = -0.8743 Deviates from the B&C-Value -0.8048 Check PLAT985_ALERT_1_G The Bi-f"= 2.4721 Deviates from the B&C-Value 2.4496 Check

32 ALERT level A = Most likely a serious problem - resolve or explain 24 ALERT level B = A potentially serious problem, consider carefully 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight 21 ALERT level G = General information/check it is not something unexpected 19 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 52 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 9 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 10/05/2023; check.def file version of 10/05/2023

Datablock I - ellipsoid plot

