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1 EXPRESSING A STRUCTURAL CAUSAL MODEL AS AN EXTENDED
STRUCTURAL CAUSAL MODEL

Algorithm 1 has as input a Structural Causal Model (SCM) and as output an Extended Structural Causal
Model (ESCM). An ESCM is a richer model than a SCM in that the likelihoods over interventions are
specified in ESCM and not in SCM, therefore, an algorithm that outputs an ESCM and takes as input an
SCM should also, either implicitly or explicitly, take as input the information P(D|U). The input P(D|U)
is present in the algorithm to make it clear that some information is added in the transformation, however is
marked as optional in ESCM as every query answerable by a SCM (by asserting that an intervention took
place) is answerable by an ESCM without the usage of the information in P(D|U).

In Figure S1 a graphical representation of a 5 variable SCM is presented alongside with two graphical
representations for a corresponding ESCM. The graphical representation of Figure S1.a is based on
a Causal Bayesian Network (CBN), the graphical representation of Figure S1.b is based on Bayesian
Network (BN) and the graphical representation of Figure S1.c is based on Markov Network (MN). The
distinction between CBN and BN is necessary as the structure in the graphical representation in Figure S1.a
contains information that is used by an algorithm external to the SCM to adjust it in the case of interventions
by replacing variable definitions given by functions, that is vi ≜ fi(Pa(vi,F)). Two different structures
with the same input-output relations, given by different composition of the functions in F , can yield two
different answers to interventional queries posed to a SCM. This is not the case in the representation used
in Figure S1.b where all input-output relationships including interventions are defined explicitly, making
the underlying graphical model a BN. In Figure S1.c the MN structure is obtained by moralization of the
BN of Figure S1.b.

Figure S1.a. Directional SCM
representation.

Figure S1.b. Directional
ESCM representation.

Figure S1.c. Non directional
ESCM representation.

Figure S1. Example of SCM and ESCM representations.
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Algorithm 1 Construction of an ESCM from a SCM.
Input SCM defined by the tuple

(
USCM,V,FSCM ,P(USCM)

)
;

Input (Optional): P(D|U)
Output: ESCM defined by the tuple

(
U,C,T,D,F ,G,P(U,D)

)
.

1: Create empty sets of variables U,C,D,T
2: Create empty sets of functions F ,G
3: U = USCM
4: for all vi ∈ V do
5: Create ci
6: Add to the variable ci the set of states that the variable vi has
7: Add ci to C
8: Create ti
9: Add to the variable ti the set of states that the variable vi has

10: Add ti to T
11: Create di

12: Add to the variable di the state corresponding to “no intervention” ▷ �
�7di∅ , see the notation section

13: Add to the variable di a state for each state of the variable vi has. Each of this states has the
meaning of intervention that sets the variable ti to the respective value in the set of values a vi can
take. ▷ ∀value ∈ V al(vi) : add �

�7divalue to the states of di, see the notation section
14: Add di to D
15: end for
16: for all fSCM i

∈ FSCM do
17: Create fi
18: Define fi as a copy of fSCM i

where in the inputs each occurrence of vj ∈ Pa(vi,F) is replaced
with a corresponding tj and the output (vi) is replaced with a corresponding ci

19: Add fi to the set F
20: Create gi that takes as inputs ci, di and outputs ti
21: gi(ci,di = �

�7di∅) = ci
22: gi(ci,di = �

�7divalue) = value ∀value ̸= ∅ ∈ V al(di)
23: Add gi to the set G
24: end for
25: if P(D|U) is not defined in the input then
26: P(D|U)← Uniform Distribution
27: end if
28: P(U,D)←P(D|U)× P(USCM) ▷ In SCM the likelihoods of interventions are not defined so a

usage of an ESCM for conditional queries is the same as for a SCM, as the conditioning of the queries
on the interventions erases the information added in this step

29: return the tuple
(
U,C,T,D,F ,G,P(U,D)

)
.

Consider that every variable in a SCM, called Example5V ar with the structure of Figure S1.a is binary,
that is: ∀ 0 ≤ i ≤ 4 {vi, vi} = V al(vi). In that SCM, v0

Causes−−−−→ v2, v1
Causes−−−−→ v2, v2

Causes−−−−→ v3 and

v2
Causes−−−−→ v4, so: v0 ≜ f0(U), v1 ≜ f1(U), v2 ≜ f2(v0,v1,U), v3 ≜ f3(v2,U) and v4 ≜ f4(v2,U).

Let’s consider that a distinct subset of variables in U is an argument in each of the functions in F . Let’s
also consider that for each plausible function (fij (Pa(vi,F))) that provides a value to a variable vi
there exists a variable Ui such that:1) f0(U0) is defined according to equation S1; 2) f1(U1) is defined
according to equation S2; 3) f3(v2,U3) is defined according to equation S3; 4) f4(v2,U4) is defined
according to equation S4. The definition of the function f2(v0,v1,U3) has 16 different1 values for

1 The number of mappings form a set A to a set B (B ← A) is |B||A|.
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U2:{u2FFFF , ..., u2TTTT } where the subscript has a representation of the output of the respective function
given a combination of values of the remaining inputs (similarly to the rest of the functions). The exogenous
variables (U) completely specify the underlying function that yielded a variable its value. The uncertainty
over the states of U (P(U)) is reflected in uncertainty about the definition of each of the functions
fi ∈ F . The values P (U0 = u0T ) = 0.2 and P (U0 = u0F ) = 0.8 yield P (v0) = 0.2 and P (v0) = 0.8.
Uncertainty in U3 signals not only uncertainty about the value of v3 but also uncertainty about the role v2
takes in the assignment of a value to v3. An intervention in an SCM changes the function that defines a
variable and so impacts the relationship among variables U and V as all functions remain functions of U
but a subset of variables V stand for different expression in U. This changes all functions that have those
expressions as inputs.

Applying algorithm 1 to Example5V ar, for each vi with {vi, vi} = V al(vi) we get a ci with {ci, ci} =
V al(ci), a ti with {ti, ti} = V al(ti) and a di with {��7di∅ ,��7diF ,��7diT } = V al(di). For each function fi in a
SCM there exists a new function fi in an ESCM. The variables ci, ti in ESCM have the same states than the
variable vi in SCM so in place of vi and vi, in functions f0 through f4, ti and ti should be written, e.g:f4 in
ESCM would be written in the form expressed in equation S5. The functions f0 and f1 would remain the
same as they don’t reference in their inputs any variable in the set V. In ESCM the output of each function
fi is attributed to the corresponding ci, therefore we have that: ci = fi(Pa(ci,F)). The set of functions
gi ∈ G for ESCM is defined in equation S6. Each function gi was defined without using a variable U in its
input so as to capture the concept of intervention with minimal changes. Nevertheless, in ESCM the object
P(U,D) was used so as to avoid making claims about the relationship between any variable in the set D
and U. In order to set P(U,D) with P(U) it is necessary to add information pertaining to P(D|U) as
P(U,D) = P(D|U)×P(U). In the absence of such information, with the only goal of performing some
computation defined for a SCM with an ESCM, any value for P(D|U) can be assumed, as SCM does not
use that information.

{
f0(U0 = u0T ) = True

f0(U0 = u0F ) = False
(S1)

{
f1(U1 = u1T ) = True

f1(U1 = u1F ) = False
(S2)



f3(v2,U3 = u3FF ) = False

f3(v2,U3 = u3FF ) = False

f3(v2,U3 = u3FT ) = False

f3(v2,U3 = u3FT ) = True

f3(v2,U3 = u3TF ) = True

f3(v2,U3 = u3TF ) = False

f3(v2,U3 = u3TT ) = True

f3(v2,U3 = u3TT ) = True

(S3)
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

f4(v2,U4 = u4FF ) = False

f4(v2,U4 = u4FF ) = False

f4(v2,U4 = u4FT ) = False

f4(v2,U4 = u4FT ) = True

f4(v2,U4 = u4TF ) = True

f4(v2,U4 = u4TF ) = False

f4(v2,U4 = u4TT ) = True

f4(v2,U4 = u4TT ) = True

(S4)



f4(t2,U4 = u4FF ) = False

f4(t2,U4 = u4FF ) = False

f4(t2,U4 = u4FT ) = False

f4(t2,U4 = u4FT ) = True

f4(t2,U4 = u4TF ) = True

f4(t2,U4 = u4TF ) = False

f4(t2,U4 = u4TT ) = True

f4(t2,U4 = u4TT ) = True

(S5)

gi(ci,di) =


ci if di = �

�7di∅

True if di = �
�7diT

False if di = �
�7diF

(S6)

2 DIRECTIONALITY, STRUCTURAL CAUSAL MODELS AND EXTENDED
STRUCTURAL CAUSAL MODELS

A SCM necessarily has a Direct Acyclic Graph (DAG) structure. The DAG is used as an input to a procedure
that adapts the SCM structure to handle interventions. The structure in equations is the main reason for the
usage of the operator defined as (≜) in SCM as a change in a definition of a variable affects the expression
of its effects2. An ESCM does not require a DAG structure because all information we need to use is in
its input-output mapping. This does not prevent us to use a DAG to convey a function decomposition that
exists due to a set of cause-effect relationships. This is the case in the graphical model representation in
Figure S1.b and in a Computation Graph (CG) that encodes the composition of all functions in the sets F
and G in an ESCM. A CG that contains composition of functions is a DAG. Contrary to SCM, in ESCM
we are not bound to a specific function composition, e.g: the MN expressed in S1.c can be compiled into a
Tractable Probabilistic Model (TPM) with variable eliminations by any order. Not requiring the usage of a
specific DAG structure in the computations done by ESCM enables us to replace any DAG for another that
has the same input-output mapping and in that sense the ESCM is not directional.

2 E.g: va
Causes−−−−→ vb

Causes−−−−→ vc, in the absence of intervention let va ≜ fa(Ua),vb ≜ fb(fa(Ua),Ub) and vc ≜ fc(fb(fa(Ua),Ub),Uc). After an

intervention setting vb to true, that is replacing its definition with vb ≜ true we have, that vc ≜ fc(true,Uc) and va ≜ fa(Ua). The intervention acted
differently weather a variable was a cause or an effect of the intervened variable. The operator defined as (≜) is a way to differentiate causes from effects,
allowing us to communicate that they should be treated differently.
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SCM were, in part, motivated by the use of causality in human language. The functional description of
ESCM provides a principled way of justifying cause-effect relationships as a way of dealing with known
unknowns under limited resources. Consider that:

1.Full information about a variable i (ti) is obtained by combining the information we get from other
variables declared to be their causes (ci) and additional information that we know to exist (di);

2.The information that is present in ti, but not in ci, is considered to be due to known unknowns (di);
3.There are limited resources preventing us from using every source of information in the computation of
ci;

4.Adding variables to the arguments of a function fi allows its output ci to better approach ti;
5.There are sources of information that are considered more useful than others for the estimation of the

value of a variable.

This can motivate the choice of “cause” variables and the usage of cause-effect relationships in the context
of ESCM as long as they are found useful. In this context, ESCM can be used without necessarily imposing
a constraint on a data generating process requiring asymmetric3 relations among variables.

3 FURTHER EMPIRICAL TESTS

3.1 Data

The empirical tests in this section are based on the Earthquake(Korb and Nicholson, 2010) dataset to
which interventions over the variables a) “earthquake” (d0), b) “alarm” (d2), and c) “MaryCalls” (d3)
were added according to the cause-effect relationships expressed in Figure S2.a. Each of the variables in the
set D has three possible values, one corresponding to the absence of intervention over the corresponding
endogenous variable and two corresponding to setting the value of the intervened variable to either of the
values it can take. Existence and type of interventions were determined independently for each variable
in D0,2,3. To the absence of intervention for each variable was assigned probability 50%. The likelihood
over the rest of the states4 of the variables D0,2,3 was determined so that interventions replaced the
probability distribution over the states of the corresponding variable that depended on the modeled causes
by a value5 sampled from a uniform distribution. 50000 samples were created and a random split was used
for separating the training data (80%) from the test data (20%).

3.2 Models and Training

Similarly to the experiments on the main paper, two types of models were used: 1) TypeOrd expressed in
equation S7 and Figure S2.b and 2) TypeNN,Tree expressed in equation S8 and Figure S2.c . Similarly
to the experiments in the main article, three instances of the second type of model (TypeNN,Tree) with
different numbers of sum nodes on each L∗ layer (2n with n=1,2 and 4) were used. The TypeNN,Tree

models used for the Earthquake dataset have 28, 80 and 256 parameters, hence they are called Tree28,
Tree80 and Tree256. The TypeOrd model used for the Earthquake dataset has 84 parameters of which 40
are non zero, hence the model was called Ord40. Contrary to the case of the models in the main article,
this was not the model with least parameters.

3 A superset of directional.
4 Corresponding to one of the possible interventions over the variable.
5 Hard interventions that set a variable to one of its possible values were used. No soft interventions that set a variable to a distribution of its values were used.
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Figure S2.a. Cause-
Effect Relationships
in Earthquake data-
set(Korb and Nichol-
son, 2010). Arrows
point from causes to
effects.

Figure S2.b. Structure of a
model given by equation S7.
The numbers next to L∗ repre-
sent the number of ⊕ nodes the
layer has.

Figure S2.c. Structure of
a model given by equation
S8.

Figure S2. Decompositions of functions according to the ground truth (Figure S2.a), and equations S7
(Figure S2.b) and S8 (Figure S2.c).

L∗
(
L∗(L∗(L∗(L∗(If (C0), If (D0)), If (C1), If (C2)), If (D2)), If (C3), If (C4)), If (D3)

)
(S7)

L∗
(
L∗(L∗(If (V0), If (V2)), If (V1)), L∗(If (V3), If (V4))

)
(S8)

The training was similar to that of the experiments connected using the datasets Asia and Synthetic and
detailed in the main article.

3.3 Results and Discussion

The results are shown in Figures S3 to S6 where the height of each bar stands for the mean of a value
over the repetitions of the experiments and the error bar has the height of two standard deviations over
the repetitions of the experiments. In Figure S3 the absolute value of the average of the logarithm of
the likelihood of observing the data in the test dataset given that the intervention took place is plotted.
This value is minimized during training (for the training dataset that is drawn from the same statistical
distribution as the test dataset) and a lower value corresponds to better modeling the data. The Ord40 model
has better fitness and the bigger the TypeNN,Tree model the better the fitness. The difference between
the models is smaller than in the experiments made in the main paper. This is explained by the simpler
relation among the variables. In Figure S4 differences in responses to queries in for the different models
can be observed. In Figure S5 it can be seen that the value of c4 is conditionally independent on d0 given
d2. There are minimal differences that are explained by the usage of random sampling in data generation
and finite dataset size. In Figure S6 it is shown that it cannot be expected that TypeNN,Tree generalizes
according to what would be expected due to our knowledge of the data generating process if we don’t
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provide it either in the data, in a set of constraints that the model should satisfy or in the objective function
used in training.

Figure S3. Absolute value of the average of logarithm of conditional likelihood of observing the test data
given that the respective intervention took place. Lower is better.

Figure S4. Response to query P (c0, c2, c3|���d0∅ ,���d2∅ ,���d3∅).

Figure S5. Response to queries P (c4|���d0F ,���d2T ,���d3∅) (left) and P (c4|���d0T ,���d2T ,���d3∅) (right).

4 SYNTHETIC DATASET

All V variables are binary, therefore each P (vi|valj) can be computed as 1−P (vi|valj) for any vi ∈ V and
any valj ∈ V al(Pa(vi,F)). It should be noted that the CBN specifies the weights when no interventions
happen, that is, they are independent of the interventions that influence the distributions of the variables in
the dataset.
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Figure S6.a. Response to query
P (c4|���d0T ,���d2T ,���d3∅).

Figure S6.b. Response to query
P (c4|���d0T ,���d2F ,���d3∅).

Figure S6.c. Response to query
P (c4|���d00.5F0.5T ,���d20.5F0.5T ,���d3∅).

Figure S6. Extrapolation from queries not observed during training.

The weights used for generating the data are listed below:

0.P (v0) = 0.9;
1.P (v1) = 0.0;
2.P (v2) = 0.23076923076923078;
3.P (V3|V0,V1)

a.P (v3|v0, v1) = 0.4375
b.P (v3|v0, v1) = 1.0
c.P (v3|v0, v1) = 0.8125
d.P (v3|v0, v1) = 0.38461538461538464

4.P (V4|V1)
a.P (v4|v1) = 0.8888888888888888
b.P (v4|v1) = 0.6086956521739131

5.P (V5|V2,V3,V4)
a.P (v5|v2, v3, v4) = 0.5625
b.P (v5|v2, v3, v4) = 0.42105263157894735
c.P (v5|v2, v3, v4) = 0.0
d.P (v5|v2, v3, v4) = 1.0
e.P (v5|v2, v3, v4) = 0.34782608695652173
f.P (v5|v2, v3, v4) = 0.6875
g.P (v5|v2, v3, v4) = 0.5555555555555556
h.P (v5|v2, v3, v4) = 0.4782608695652174

6.P (V6|V3,V5)
a.P (v6|v3, v5) = 0.38461538461538464
b.P (v6|v3, v5) = 1.0
c.P (v6|v3, v5) = 1.0
d.P (v6|v3, v5) = 0.4
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