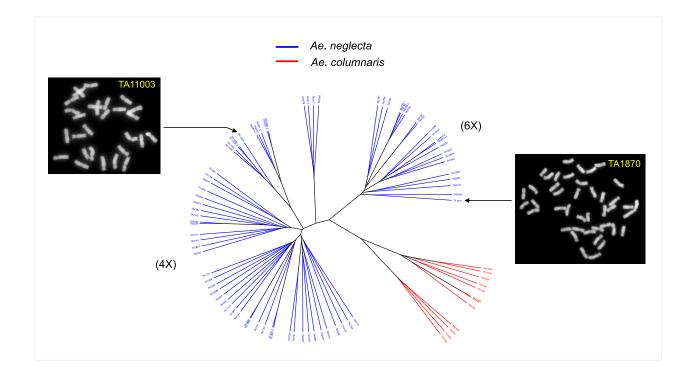
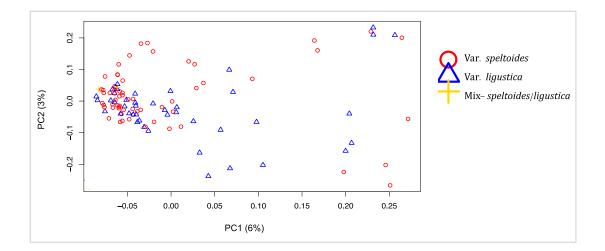
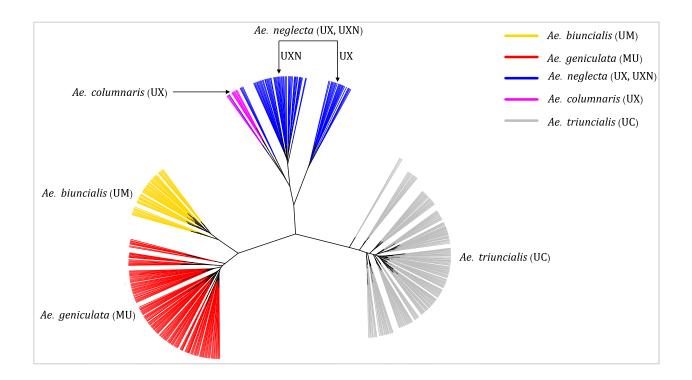
Supplementary Data


Genomic Characterization and Gene Bank Curation of Aegilops: The Wild Relatives of Wheat

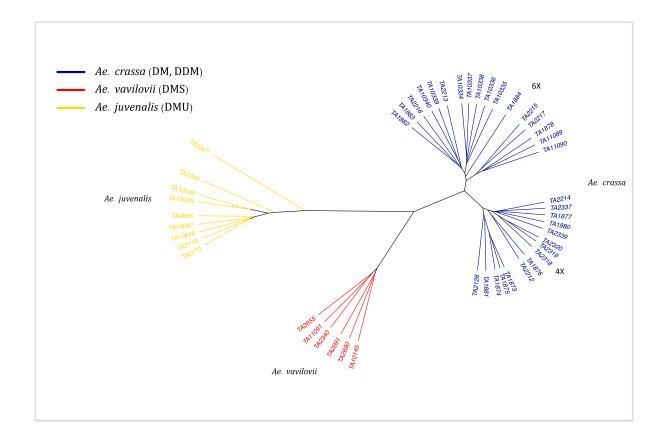
Laxman Adhikari^{1,2}, John Raupp², Shuangye Wu², Dal-Hoe Koo², Bernd Friebe², and Jesse Poland^{1,2,3*}

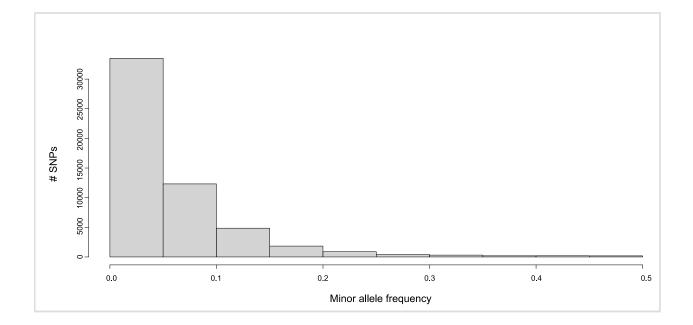

- ¹ KAUST Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- ² Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan Kansas, USA, 66502
- ³ Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia

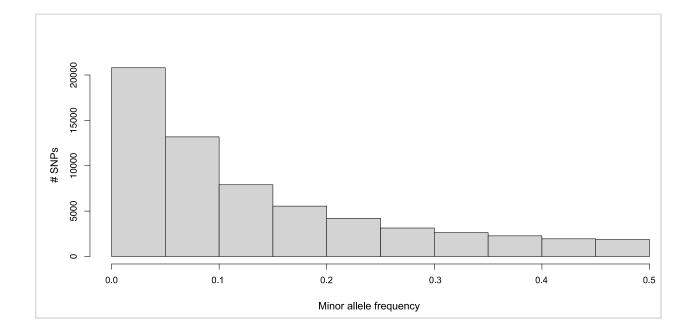
* Corresponding author: jesse.poland@kaust.edu.sa ; ORCID: 0000-0002-7856-1399

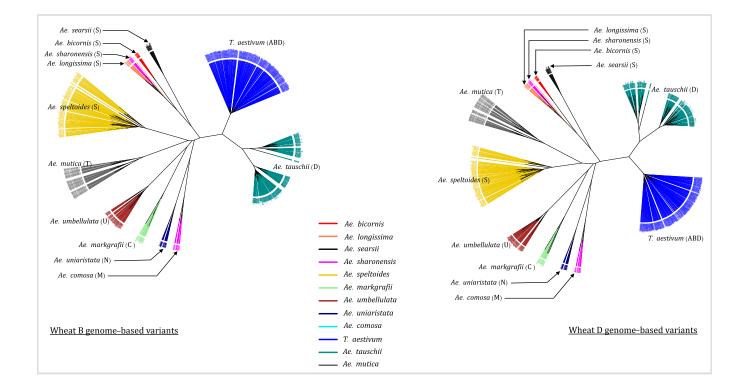

Supplementary Figures

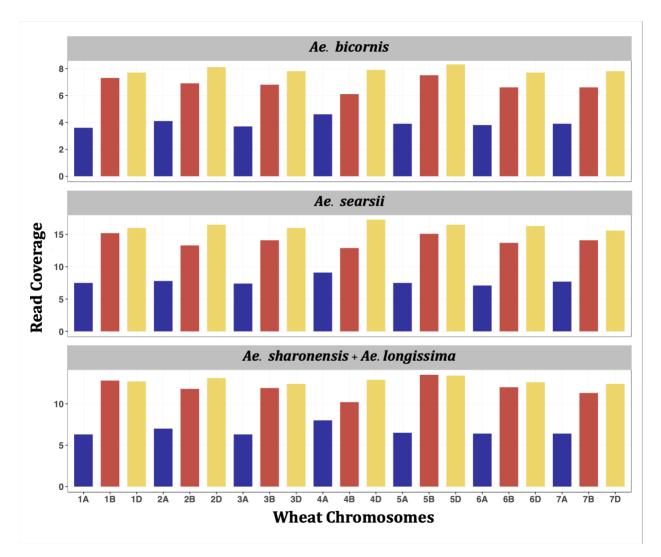

Supplementary Figure S1. The GBS SNP based unrooted neighbor-joining (NJ) tree separating tetraploid and hexaploid accessions of *Ae. neglecta* (blue clade) and the chromosome counts of two representative individuals from each 4X and 6X sub-clade of the *Ae. neglecta*. The other sister species *Ae. columnaris* accessions are shown in the red-colored clade.

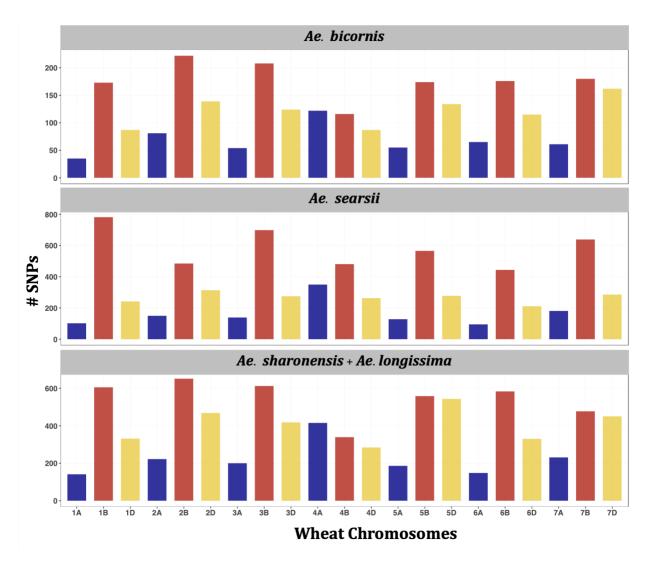

Supplementary Figure S2. Principal component analysis (PCA) plot showing two forms of *Ae*. *speltoides*; var. *speltoides* and *ligustica*. No separate PCA cluster was observed for each of the groups.

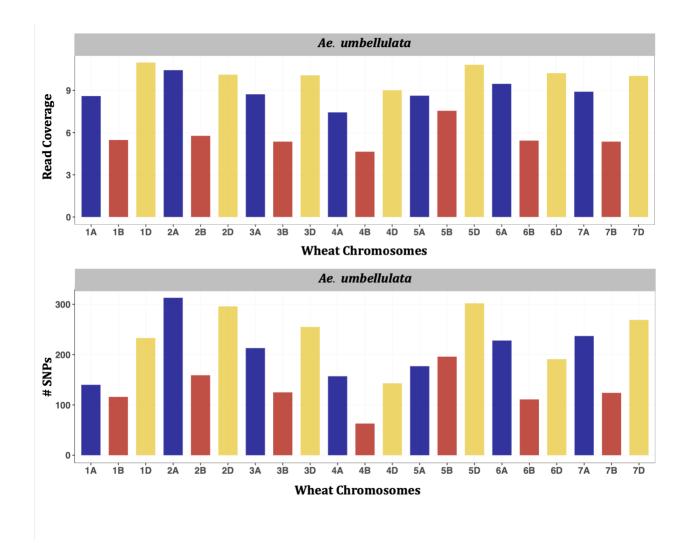

Supplementary Figure S3. An unrooted neighbor-joining (NJ) tree separating some tetraploid *Aegilops* accessions containing two species whose genome formula is controversial, the *Ae*. *neglecta* and *Ae*. *columnaris*. These two species clustered in the middle of UM genome clade and UC genome clade. The M genome (now proposed X) was a part of traditional *Ae*. *neglecta* and *Ae*. *columnaris* genome formula.

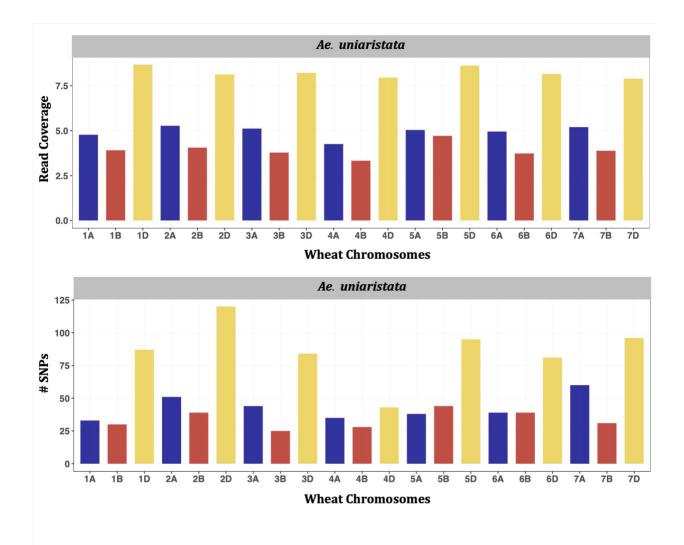

Supplementary Figure S4. The bar chart showing the overall sequence read alignment of four tetraploid *Aegilops* species; *Ae. biuncialis, Ae. geniculata, Ae. columnaris* and *Ae. neglecta* when aligned on M and U genome *de novo* mock reference.

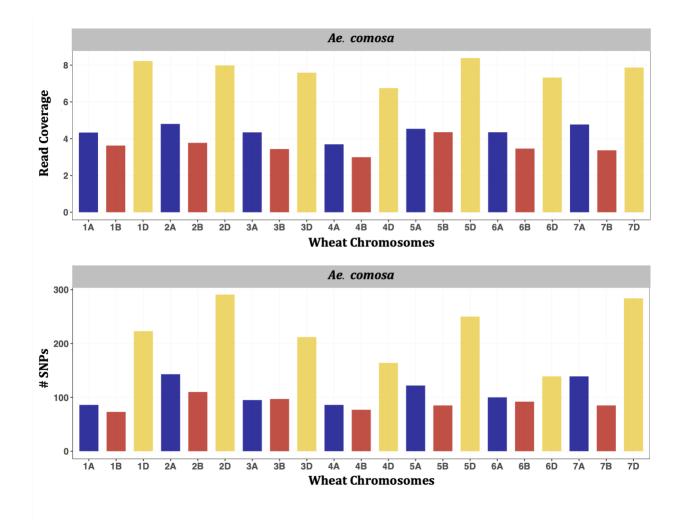

Supplementary Figure S5. An unrooted neighbor-joining (NJ) tree of *Ae. juvenalis, Ae. crassa and Ae. vavilovii.* The tree branches were colored based on the accession's taxon. The *Ae. crassa* branches we annotated as 4x or 6x based on cytological chromosome counting. The grouping clearly separated 6X and 4X *Ae. crassa*.

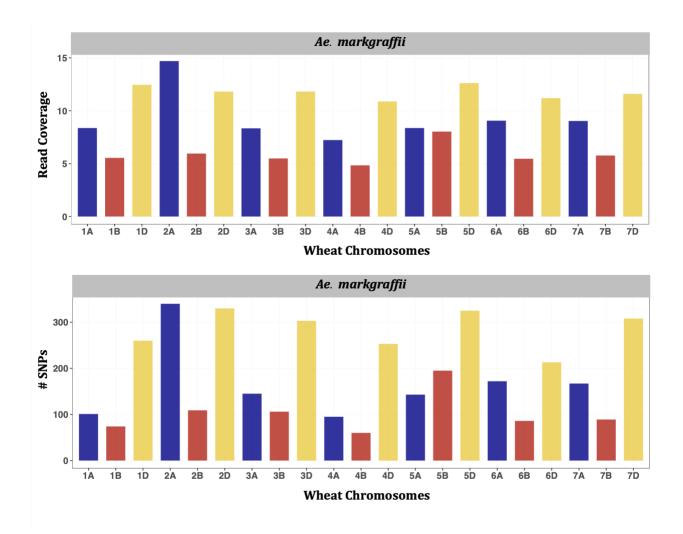

Supplementary Figure S6. Minor allele frequency (MAF) distribution within the loci for the entire *Aegilops* collection. Most of the loci had a very low MAF.

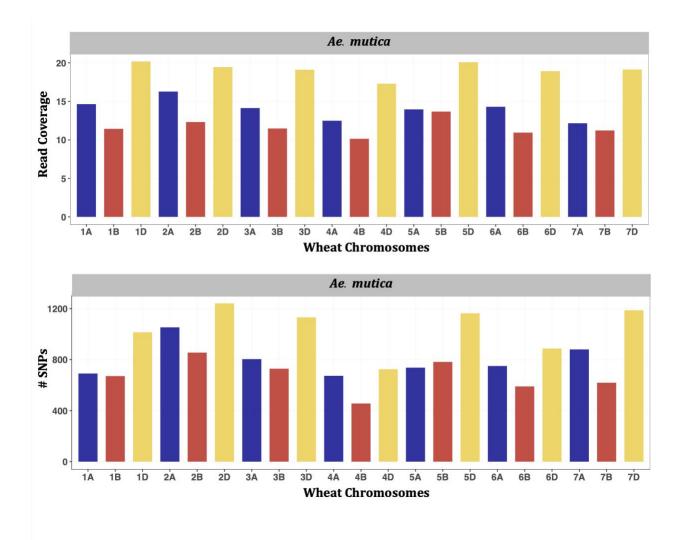

Supplementary Figure S7. Distribution of minor alleles frequency (MAF) for segregating variants in *Ae. speltoides*.


Supplementary Figure S8. An unrooted neighbor-joining (NJ) tree constructed using the genotyping information generated by using wheat B genome as a reference (left); and the unrooted NJ tree constructed using genotyping profile generated using the wheat D genome as a reference (right). The clades were colored based on genetic clustering.


Supplementary Figure S9. Bar charts showing genomic relations between the *Sitopsis* section *Aegilops* (except *Ae. speltoides*) and the wheat. The number of reads coverage (mapped per 1 Mb wheat genome) are shown for all wheat chromosomes. *Ae. sharonensis* and *Ae. longissima* appeared as highly genetically similar so their sequences were mapped together.


Supplementary Figure S10. Bar charts showing genomic relations between the *Sitopsis* section *Aegilops* (except *Ae. speltoides*) and the wheat. The number of variants (# SNPs) identified per wheat chromosome for the four species are shown. *Ae. sharonensis* and *Ae. longissima* appeared as highly genetically similar so their SNPs were called together.


Supplementary Figure S11. Bar chart showing genomic relation between U genome diploid *Ae*. *umbellulata* and wheat. The average number of *Ae*. *umbellulata* sequence reads mapped per Mb of the wheat genome (upper panel), and numbers of *Ae*. *umbellulata* variants mapped on the respective wheat chromosomes (lower panel).


Supplementary Figure S12. Bar chart showing genomic relation between N genome diploid *Ae*. *uniaristata* and wheat. The average number of *Ae*. *uniaristata* sequence reads mapped per Mb of the wheat genome (upper panel), and numbers of *Ae*. *uniaristata* variants mapped on the respective wheat chromosomes (lower panel).

Supplementary Figure S13. Bar chart showing genomic relation between M genome diploid *Ae*. *comosa* and wheat. The average number of *Ae*. *comosa* sequence reads mapped per Mb of the wheat genome (upper panel), and numbers of *Ae*. *comosa* variants mapped on the respective wheat chromosomes (lower panel).

Supplementary Figure S14. Bar chart showing genomic relation between C genome diploid *Ae*. *markgraffii* and wheat. The average number of *Ae*. *markgraffii* sequence reads mapped per Mb of the wheat genome (upper panel), and numbers of *Ae*. *markgraffii* variants mapped on the respective wheat chromosomes (lower panel).

Supplementary Figure S15. Bar charts showing genomic relations between *Ae. mutica* and wheat. The average number of *Ae. mutica* sequence reads mapped per Mb of the wheat genome (upper panel), and numbers of *Ae. mutica* variants mapped on the respective wheat chromosomes (lower panel).

Supplementary Tables

Supplementary Table S1. List of *Aegilops* germplasms in the WGRC gene bank collection with the taxa and origins of the accessions. [external file]

Supplementary Table S2. Misclassified and genetically identical (redundant) *Aegilops* accessions. The redundant accession was determined for only those diploid species collections whose genotyping was based on the variants called on their reference genome. [external file]

Supplementary Table S3. Different SNP matrices, population genotyped, the reference

sequence used and the application which used the SNP matrix.

Species	Total	Reference/Mock Reference genome Source	Total Filtered	Analysis
	Accessions	Species	SNPs	
All 23 species	1051	De novo: derived from sequence reads	54667	Gbc, PA, GR
		representing all Aegilops genomes		
All 23 species	1041	After filtration: (MAF > 0.01, missing <30%,	46879	Gbc, PA, GR
		heterozygosity <10%)		
All U genome species	596	De novo: from Ae. umbellulata sequence reads	18653	Gbc, PA, GR
Ae. neglecta and Ae.	88	De novo: from Ae. neglecta and Ae. columnaris	21035	Gbc
columnaris		sequence reads		
Ae. umbellulata (U)	58	De novo: from Ae. umbellulata sequence reads	18653	GR
Ae. comosa (M)	17	De novo: from Ae. comosa sequence reads	23304	GR
S-genome diploids	214	Ae. speltoides reference genome	13553	Gbc, PA
and Ae. mutica				
Ae. searsii	18	Ae. searsii reference genome	11663	Gbc
Ae. sharonesis and	23	Ae. sharonensis reference genome	19000	Gbc
Ae. longissima				
Ae. bicornis	13	Ae. bicornis reference genome		Gbc
Ae. tauschii	47	Ae. tauschii reference genome	28617	Gbc
Ae. speltoides	97	Chinese spring wheat reference genome	23281	GR
Ae. searsii	18	Chinese spring wheat reference genome	7114	GR
Ae. sharonesis and	23	Chinese spring wheat reference genome	8192	GR
Ae. longissima				
Ae. bicornis	13	Chinese spring wheat reference genome	2570	GR
Ae. mutica	54	Chinese spring wheat reference genome	17638	GR
Ae. <i>umbellulata</i>	58	Chinese spring wheat reference genome	4048	GR
Ae. uniaristata	24	Chinese spring wheat reference genome	1142	GR
Ae. comosa	17	Chinese spring wheat reference genome	2853	GR
Ae. markgraffii	16	Chinese spring wheat reference genome	3874	GR

Gbc = Gene bank curation

PA = Population analysis

GR = Genome relation

Supplementary Table S4. *Sitopsis* section *Aegilops* and *Ae. mutica* pairwise F_{ST} values. The higher values indicate more genetic differentiation and lower values indicate a lower genetic differentiation between pairs.

	Ae.	Ae. searsii	Ae.	Ae.	Ae. speltoides
	longissima		sharonensis	mutica	
Ae. bicornis	0.027	0.057	0.027	0.073	0.085
Ae. longissima		0.054	0.006	0.067	0.079
Ae. searsii			0.055	0.075	0.088
Ae. sharonensis				0.068	0.081
Ae. mutica					0.065

Supplementary Table S5. Total segregating loci in UM and UX genome species when called variants on the M genome and U genome mock references independently.

Species	No. of	Segregating loci	Segregating loci
	individuals	M-genome variants	U-genome variants
Ae. comosa	17	23304	-
Ae. biuncials (UM)	53	11598 (50%)	15380 (83%)
Ae. geniculata (MU)	143	10590 (46%)	11331 (61%)
Ae. columnaris (UX)	12	2287 (10%)	9849 (53%)
Ae. neglecta (UX, UXN)	76	5467 (24%)	12013 (65%)
Ae. umbellulata (U)	58	-	18653