

Supplementary Material

SHIP: a computational framework for simulating and validating novel

technologies in hardware spiking neural networks

Emanuele Gemo1*, Sabina Spiga1, Stefano Brivio1

1CNR‒IMM, Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, Italy

*Correspondence: Emanuele Gemo: emanuele.gemo@mdm.imm.cnr.it

1 Available emulation platforms

In the table below, we report a non-exhaustive list of the numerical tools that can be directly employed

or adapted to the simulation of Spiking Neural Networks (SNNs). This table collects the numerical

tools available at the date of writing, limited to the open source ones that offer a maintained or at least

non-deprecated version. It details 37 numerical tools, added to the one here illustrated. The table sorts

the entries by year of publication of the first release. A legend is provided in caption.

N
a

m
e

Y
ea

r
o

f
1

st

re
le

a
se

S
u

m
m

a
ry

 o
f

th
e

ke
y

ch
a

ra
ct

er
is

ti
cs

P
h

il
o

so
p

h
y

M
o

d
el

T
em

p
o

ra
l

p
ro

g
re

ss

L
a

n
g

u
a
g

e

en
vi

ro
n

m
en

t

G
P

U
 /

d
is

tr
ib

u
te

d
 c

o
m

p
u

ti
n

g

GENESIS

(Bower and

Beeman,

2007)

1
9

8
8

It is devised to emulate

biological neurons and networks

with high resolution; it uses

empirical models of neurons and

synapses, and it enables

individually configurable

parameters and connectivity.

MD DIF. m-CD
GENESIS

Script

DIS.

(Crone et

al., 2019)

XPPAUT

(Bard, 1996) 1
9

9
6

Originally devised as a general-

purpose numerical tool for

simulating and analyzing

dynamical systems, it can also be

used for small-sized SNNs.

MD DIF. (f,v)-CD

Stand-alone

program;

C libraries

can improve

handling or

performance

CPU only*

NEURON

(Hines et al.,

2020)

1
9

9
7

Similar in philosophy to

GENESIS.
MD DIF. (f,v)-CD

HOC,

Python

GPU,

(Migliore

et al.,

2006),

DIS.

mailto:emanuele.gemo@mdm.imm.cnr.it

 Supplementary Material

 2

NCS

(Drewes,

2005; Hoang

et al., 2013)
2

0
0

0
 (

v
er

.
1

)

Parallel computation-centered

SNN simulator, proposed to

tackle the emulation of

simplified (single-compartment

neuronal models, templated

behavioral patterns, etc.), yet

realistic, biological systems.

Brainlab (Drewes et al., 2009)

adds a more user-friendly Python

interface.

MD TD f*-CD
C/C++,

Python

GPU/

DIS.

EDLUT

(Ros et al.,

2006)

2
0

0
6

It tackles the emulation of

biological/biologically inspired

networks via the use of look-up

tables, possibly generated by

external solvers (Carrillo et al.,

2007), reducing the otherwise

costly solution of the differential

equation systems of the

(available) neurons’ models

MD DIF.
CD/

ED

C/C++,

Python

GPU (CD;

ED

algorithm

works on

CPU only)

NEST

(Gewaltig

and

Diesmann,

2007)

2
0

0
7

General purpose emulator, best

addressing the analysis of the

network’s dependency on

neuron/synapse models and

architectural parameters

MD/

DD m
o

d
el

d
ep

en
d

en
t

v*-CD
SLI, C/C++,

Python

DIS.

(Ippen et

al., 2017)

CARLSim
(Niedermeier

et al., 2022)

2
0

0
9
 Similar in philosophy to NEST,

it natively supports GPU-

accelerated calculations

MD DIF. v-CD
C/C++,

Python
GPU

NeMo

(Fidjeland et

al., 2009)

2
0

0
9

A CUDA-based platform for

emulation of large biological

networks, that is focused on

using the Izhikevich neuron

model for large but sparsely

connected networks.

MD TD* m-CD

C/C++,

Python,

MATLAB

GPU

CNS

(Poggio et

al., 2010)

2
0

1
0

Data-driven analysis tool with

model-driven elements; CNS is a

parallel-computing oriented

platform, proposed for large

networks, including biological

(Hodgkin-Huxley model based)

ones. It can handle the neuron

connectivity automatically, by

way of spatial coordinates.

MD/

DD

m
o

d
el

 d
ep

en
d

en
t*

f*-CD
C/C++,

MATLAB
GPU

GeNN

(Yavuz et

al., 2016)

2
0

1
1

It proposes a library to generate

efficient CUDA code from a

simplified custom model

building interface, intended to

accelerate the emulation of

biological-oriented SNNs.

MD

m
o

d
el

d
ep

en
d

en
t

f*-CD

C/C++,

CUDA,

Python

GPU

3

N2D2

(Bichler et

al., 2017)

2
0

1
3

It’s been purposely developed to

design and emulate deep neural

networks, in particular dedicated

to the integration in embedded

systems. It can be adapted to

emulate inference and local-rule-

based training of spiking

networks, see e.g. (Brivio et al.,

2021)

MD/

DD

m
o

d
el

 d
ep

en
d

en
t

d
ep

en
d

en
t

o
n
 t

h
e

im
p

le
m

en
ta

ti
o

n

C/C++ GPU

Nengo

(Bekolay et

al., 2014)

2
0

1
4

Conceptually similar to PyNN, it

proposes a simplified

environment to generate and

simulate large-scale networks

based on available or user-

defined neuron and synapse

models. NengoDL (Rasmussen,

2019) is a dedicated fork to the

integration of deep learning

techniques in Nengo (derived

from TensorFlow)

MD/

DD
TD (f,v)-CD Python

G
P

U
 (

R
as

m
u

ss
en

,
2

0
1

9
)

Auryn

(Zenke and

Gerstner,

2014)

2
0

1
4

Simulation environment focused

on studying plastic spiking

recurrent neural networks of

small-to-medium sizes.

MD TD

H
y

b
ri

d
 (

f-
C

D
,

w
it

h
 E

D
 w

ei
g

h
t

u
p

d
at

es
)

C/C++ DIS.

Brian 2

(Stimberg et

al., 2019)

2
0

1
4

 (
v

er
.
1

)

General purpose environment,

that provides tools to i) generate

neurons and synapse models via

defining a system of differential

equations, and ii) to arrange such

devices and analyze the

emerging network behavior.

MD DIF.

f-
C

D
 (

E
D

 a
v

ai
la

b
le

w
h

en
 u

si
n

g
 l

in
ea

r

eq
u

at
io

n
s)

Python

G
P

U
 (

d
ep

en
d

en
t

o
n

ex
te

ra
l

so
lv

er
s

se
s

(S
ti

m
b

er
g

 e
t

al
.,

 2
0

2
0

;

A
le

v
i

et
 a

l.
,

2
0

2
2

))

NEVESIM

(Pecevski et

al., 2014)

2
0

1
4
 Proposes a simplified

environment for the

construction, simulation and

analysis of neural models.

MD TD

E
D

 (
C

D
 i

s

al
lo

w
ed

)

C/C++,

Python
CPU-only

ANNarchy

(Vitay et al.,

2015)

2
0

1
5

It draws elements from the

PyNN environment interface and

the Brian model definition

interface. It allows one to

efficiently emulate spiking

networks and their training via

STP (short-term plasticity) or

STDP (spike-timing dependent

plasticity)

MD DIF. f-CD
Python,

C/C++
GPU

 Supplementary Material

 4

MegaSim

(Stromatias

et al., 2017)
2

0
1

6

Tool addressing the event-driven

simulation of hardware systems,

strongly addressing the

simulator performance. It relies

on a strongly modular and

compartmentalized vision of the

modeled components. STDP-

learning rules and vision-

dataset-oriented modules are

available.

MD/

DD
TD

E
D

 (
th

o
u

g
h

 a
 c

lo
ck

m
o

d
u

le
 c

an
 b

e
in

cl
u

d
ed

)

C/C++ CPU only

BindsNET

(Hazan et

al., 2018)

2
0

1
8

Environment that is dependent

on the PyTorch datatypes, which

are used as the mathematical

framework to define models for

neurons, synapses, and learning

rules.

DD TD f-CD
Python

(PyTorch)
GPU

DynaSim

(Sherfey et

al., 2018)

2
0

1
8

It enables defining of new

neurons and synapse models

either via their differential

equation systems or via the

combining of already-available

models. It natively supports tools

to post-process the emulated

network results, e.g. investigate

how the simulated network

behavior varies according to

predetermined architectural

parameters.

MD DIF. (f,v)-CD MATLAB DIS.

SPIKE

(Ahmad et

al., 2018)

2
0

1
8

Simulation-speed optimized,

GPU-enabled, SNN emulator for

bio-inspired network analysis,

that provides few commonly

adopted neuron, synapse, and

learning rule models.

MD TD

f-
C

D
 (

a
ti

m
es

te
p

g
ro

u
p

in
g

 t
ec

h
n

iq
u

e

is
 h

er
e

p
ro

p
o

se
d

)

C/C++,

CUDA
GPU

LSNN

(Bellec et

al., 2018)

2
0

1
8

Set of Tensorflow-based

libraries adapted to the

emulation and training of

recurrent SNNs, based on an

adaptive leaky integrate and fire

model.

MD/

DD
TD f-CD

Python

(Tensorflow)
GPU

cuSNN

(Paredes-

Valles et al.,

2020)

2
0

1
8

Environment defining a small

selection of learning rules,

neuron or synapse models and

layers, which combined enable

one with the GPU-accelerated

emulation of large SNNs

MD/

DD
TD f-CD

C/C++,

CUDA
GPU

5

Slayer

(Shrestha

and Orchard,

2018)
2

0
1

8

Framework centered on the data-

driven emulation of SNNs and

their synaptic weight/axon delay

training based on a modified

error backpropagation

technique. Currently being

integrated into a more

comprehensive set of

functionalities for the Lava

environment (Richter et al.,

2021).

DD TD f*-CD

C/C++,

CUDA,

Python

GPU

RockPool

(Muir et al.,

2019)

2
0

1
9

A platform aimed to bridge the

gap between the design and

emulation of a spiking network

(here viewed as a more general

dynamical system), and training

of such network by use of deep-

learning methods. It is suited to

designing SNN hardware

specifically. Models of devices,

subnetworks, and learning

methods can be defined or

imported from other platforms

(e.g. PyTorch, Jax (Frostig et al.,

2018), Brian 2)

MD/

DD

T
D

/D
IF

 (
as

 i
t

in
cl

u
d

es
 B

ri
an

2
 a

n
d

Ja
x

 m
o

d
el

 s
u

p
p
o

rt
)

f-CD

Python

(PyTorch is

supported)

GPU

SpykeTorch

(Mozafari et

al., 2019)

2
0

1
9

Pytorch extension optimized

towards the emulation of STDP

and R-STDP feed-forward SNNs

using the time-to-first-spike data

encoding.

DD TD f-CD
Python

(PyTorch)
GPU

PySNN

(Büller,

2020)

2
0

1
9
 Another take on integrating

PyTorch with SNN emulation

functionalities, comprising a set

of local learning rules.

DD TD f-CD
Python

(PyTorch)
GPU

s2net

(Zimmer et

al., 2019)

2
0

1
9

PyTorch implementation of

dense and convolutional SNN

LIF (Leaky Integrate and Fire)

layers, reliant on the surrogate

gradient-based (Neftci et al.,

2019) conventional DNN

training methods

DD TD f-CD
Python

(PyTorch)
GPU

sinabs

(Lenz and

Sheik, 2020)

2
0

1
9

Similarly to RockPool, this

framework is intended to aid the

design and deployment of SNNs,

with a narrower focus on vision

datasets and broader reliance on

the PyTorch syntax and its DNN

learning routines.

DD TD f-CD
Python

(PyTorch)
GPU

DECOLLE

(Kaiser et

al., 2020)

2
0

2
0

A narrow-focused framework

that uses PyTorch libraries to

implement both SNN emulation

functionalities and the proposed

DEep COntinuous Local

Learning (DECOLLE) rule.

MD/

DD
TD f-CD

Python

(PyTorch)
GPU

 Supplementary Material

 6

Spice

(Bautembach

et al., 2020)

2
0

2
0

GPU-reliant, clock-driven SNN

simulation approach, oriented

towards increasing the

performance metrics (limited to

a single workstation)

DD TD

f-
C

D
 (

u
si

n
g

ti
m

es
te

p
 g

ro
u

p
in

g

as
 i

n
 S

P
IK

E
)

C/C++,

CUDA
GPU

Spiking

Jelly

(Fang et al.,

2020)

2
0

2
0

A comprehensive set of libraries

expanding PyTorch with the

SNN emulation functionality,

along with data handling and

conversion.

DD TD f-CD
Python

(PyTorch)
GPU

Sapicore

(Moyal et

al., 2021)

2
0

2
1

Minimal environment reliant on

a PyTorch computational back-

end. Similarly to SHIP, it’s been

primarily developed with the

view to facilitate the modeling of

neuromorphic elements (and

their integration with PyTorch),

by way of a set of high-level

functions and classes.

MD/

DD

M
o

d
el

 d
ep

en
d

en
t

M
o

d
el

 d
ep

en
d

en
t

Python

(PyTorch)

G
P

U
 (

p
o

te
n

ti
al

;

d
ep

en
d

en
t

o
n
 t

h
e

u
se

r

im
p

le
m

en
ta

ti
o

n
)

Norse

(Pehle and

Pedersen,

2021)

2
0

2
1

PyTorch extension, oriented to

gather the results of simulated

SNNs inference and bio-inspired

learning processes; it has been

designed with a strong

orientation towards sparse

computing techniques to better

interface with event-based

inputs.

MD/

DD
TD f-CD

Python

(PyTorch)
GPU

Lava

(Richter et

al., 2021)

2
0

2
1

Environment enabling one to

design and test SNN hardware

with an application-oriented

philosophy, providing several

neuron models, tools aiding the

definition of network topologies,

and IO circuitry. It can natively

run simulations on CPUs, GPUs,

and neuromorphic hardware.

MD/

DD
TD

H
y

b
ri

d
 (

E
D

 m
es

sa
g

e

p
ar

si
n

g
,

m
-C

D
 m

o
d

el

ev
al

u
at

io
n

)

Python GPU

snnTorch

(Eshraghian

et al., 2021)

2
0

2
1

An alternative implementation

of spiking layer functionalities to

be employed within the PyTorch

environment, comprehensive of

a set of surrogate gradient

functions to enable DNN

learning techniques.

DD TD f-CD
Python

(PyTorch)
GPU

EvtSNN

(Mo and

Tao, 2022)

2
0

2
2

Based on a previous release, the

EDHA simulator (Mo et al.,

2021). EvtSNN is an improved

version of an event-driven

simulator; it is optimized for the

training of LIF-based networks

by use of the STDP learning rule.

MD TD ED Java, C/C++ CPU only

7

Doryta

(Cruz-

Camacho et

al., 2022)
2

0
2

2

Successor of NeMo (Plagge et

al., 2018); Doryta has been

developed to enable one with

both simulation of hardware-

based SNNs (by way of

simplified models), and analysis

of the results to gather a few

potential performance metrics.

MD/

DD
TD

f*
-C

D
/

E
D

 (
o

n
ly

 w
h

er
e

n
eu

ro
n

s

h
av

e
p
o

si
ti

v
e

le
ak

 v
al

u
es

)

C/C++ DIS.

SHIP

(this work) 2
0

2
3

SHIP has been developed to

facilitate the simulation of

hardware SNN systems, by way

of compact models.

It fosters features suited for the

analysis and performance

assessment of the emulated

architectures, also integrating

PyTorch machine-learning

techniques, currently leveraging

the surrogate gradient technique

(Neftci et al., 2019)

MD/

DD
TD

(f
,m

)-
C

D
 (

m
u

lt
ip

le
 t

im
e
-s

te
p

si
ze

s
ca

n
 b

e
p

re
d

et
er

m
in

ed
 t

o

ca
rr

y
 o

u
t

th
e

si
m

u
la

ti
o

n
 t

as
k

)

Python

(PyTorch)
GPU

Table 1. Panoramic of the available open-source numerical tools enabling one to carry out emulation

of hardware-based SNN systems. Legend: MD – model-driven approach; DD – data-driven approach;

TD – time-discrete equation system model; DIF. – differential equation system model; CD – clock-

driven temporal handling (f- fixed, v- variable, m- multi-clock); ED – event-driven temporal handling;

DIS. – distributed computing available. *Data unclear or missing in the available references; tabulated

data interpreted from the source code.

2 Group sorting algorithm

Here we provide few more details to explain the rationale behind the objective function of the proposed

sorting algorithm, and its practical functioning.

Objective function: reduction of the delay-substituted DAM LTS lower triangular sum

The algorithm's main goal is to find the group order so that, during the simulation, it lowers the count

of events breaking the causal correlation or inducing computational artifacts (due to the non-negligible

effect of the time-step size). For feedforward networks the task is trivial as the groups are inherently

hierarchically-sorted (each finds a single source, and a single target). However, the same task is more

difficult for recurrent networks, in which groups may find multiple sources and targets.

To define a unique method to efficiently linearize arbitrarily-complex networks, we evaluated the

hypothetical edge scenarios for which a candidate solution consistently leads to the most suitable

sorting orders. We have found that the best solution leverages the delay time values, decreasing the

total of the negative-valued delays. This approach directly minimizes the count of possible artifacts, in

which groups “hang” waiting for a late, expected input.

Here follows a practical example to show the potential effect of an arbitrary, un-mediated linearization.

Let’s assume a circularly connected network AB, with delay times AB = 0 and BA =1, simulated using

timesteps of size 1. Each group relays any input to the connected ones (as in the case of a low-threshold

LIF neuron). We omit discussing the synaptic connections for sake of simplicity, integrating the delay

 Supplementary Material

 8

effect in the A and B groups. We start with a signal being delivered from A (noting that an analogous

version of the events happens when starting with B).

The network linearized as AB (LTS of 0) behaves as follows (a picture is found in Figure S1):

• at t=0, the signal travels from A to B, is received from B, and sent back to A (with a delay of

1)

• at t=1, A receives the delayed signal from B and sends it back to B; B receives the signal and

sends it to A (with a delay, not received)

• at t>1, the chain of events follows the one of t=1; the network “spikes” at a frequency of 2

relays per timestep.

Figure S1. Behavior of the ideal circularly-connected AB network, linearized as A-B. Left: delay-

substituted DAM. Right: schematic representation of the system temporal evolution. Data transfer is

depicted using black arrow (solid for zero-valued delay, double-lined for 1-valued delays).

The network linearized as BA (LTS of 1) sees the following (a picture is reported in Figure S2):

• at t=0, the signal travels from A to B (not received)

• at t=1, B receives the signal from A (with an artifact delay of 1, tracked as a red arrow in Figure

S2), and sends it back to A with a delay of 1 (A does not receive the signal)

• at t>1, the chain of events follows the one of t=1; the network “spikes” at a frequency of 1 relay

per timestep, halved with respect to the ideal behavior.

Figure S2. Behavior of the ideal circularly-connected AB network, linearized as B-A. Left: delay-

substituted DAM. Right: schematic representation of the system temporal evolution. Data transfer is

depicted using black arrow (solid for zero-valued delay, double-lined for 1-valued delays). Red arrows

track the computational artifact events.

The two linearizations yield different outputs, with the former correctly reproducing the continuous-

time representation of the circular system; and the latter not merely being shifted in time, but seeing

an effective reduction by half of the relaying frequency, due to the computational artifacts (red arrows).

Whilst simplistic, this example is effective in demonstrating the main practical issues arising from a

non-mediated linearization of the system.

9

Sorting algorithm functioning/computational requirement

We here summarize the algorithm's practical functioning. Given N source-target group pairs, the

algorithm performs the following:

i) calculates all potential contributions to the LTS for all N pairs,

ii) calculates the LTS for all N2 arrangement and swaps of the pairs,

iii) sorts the N2-wide list of sequences (by increasing LTS value); and only then,

iv) progressively evaluates each sequence (with at most N sums and logical statement

evaluations) until finding the earliest feasible one.

We reiterate that the low-LTS sequence is used to set the IO addresses of each group, thus the

calculation is performed once.

Strategies are put in place to avoid the evaluation of the whole N-long sequence, if unfeasible elements

within each sequence are identified (e.g. having A before B, B before C, and then C before A). Even

assuming N>100 (which is unlikely given the scope of the platform), the worst-case scenarios would

reasonably see the algorithm carrying out less than a hundred sums and logical statement evaluations,

for a few tens of thousands of sequences. The total runtime of this algorithm is likely within a single

second, even with dated hardware. In more practical scenarios, the computational impact of this

algorithm is irrelevant.

3 SHIP interface: an explained practical example

For sake of completeness, we report the code that generates the data shown in Figure 8b of the main

article. This piece of code hopefully exemplifies the main features of SHIP interface, and the potential

results that can be attainable through its use. We then use this example to further demonstrate an useful

feature embedded within the SHIP interface, which allows one to use a synthetic notation to state a

wide range of value distributions (as arguments of each group instation).

The code generating the data in Figure 8b is as follows:

import classes and functions
from SHIP import (network, # network class
 inputN, # input neuron class
 lS_1o, # 1st order leaky synapse class
 lifN, # LIF neuron class
 refractory) # refractory superclass
from torch import (manual_seed,
 rand,
 arange,
 zeros,
 normal)
preliminary ops, determining emulated time and other minor details
eps = 1e-6 #small number
batch_size = 10 #number of parallel simulations
time, dt = .1, 1e-4 #emulated time [seconds], time-step size [seconds]
nts = int(time//dt + time%dt) #number of time-steps
ns = [3,1] #network neuron layer size

 Supplementary Material

 10

input generation
rate = 20 #[Hz]
manual_seed(3000)
poisson_input = (rand(nts,ns[0])<(rate*dt)).expand(batch_size,nts,ns[0])
define network
snn = network()
add neuron groups
snn.add(inputN, #add input_neuron group
 'I', #group tag (mandatory)
 N = ns[0]) #number of units within the group
snn.add(refractory(lifN), 'N1', N = ns[1], #add refractory LIF group
 tau_beta = arange(10e-3,100e-3+eps,10e-3).unsqueeze(-1),

 #temporal constant [s]
 thr = 1.,#threhshold potential [a.u]
 u = lambda b,n:
normal(zeros(n),1).abs().unsqueeze(0).expand(b,n),
 #potential at t = 0 [a.u.]
 u0 = 0., #rest/reset potential
 refr_time = 10e-3) #refractory time [seconds]
add synaptic group
snn.add(lS_1o, 'S1', source = 'I', target = 'N1', #add synapse group
 w_scale = 150, #synaptic weight global scaling factor
 tau_alpha = 5e-3, #temporal constant [s]
 delay_time = 0e-3, #delay time
 w__ = rand) # synaptic weight matrix

init network and monitors
snn.set_monitor(**{'S1':['output','I'],'N1':['u','output']})
snn.init(dt = dt, nts = nts, batch_size = batch_size)
run simulation and gather data
snn.run(poisson_input) # run emulation
data = snn.get_monitored_results() # gather data

Using the script example above, we discuss a practical feature of SHIP which we believe being

extremely useful during the network building stage, though too technical to be highlighted within the

manuscript. SHIP has the option to parse the arguments of the group class as a generator function,

which can be called to yield dynamically-generated data. This feature is helpful for two reasons: i) it

allows one to re-generate data according to arbitrary distributions, every time the network is initialized;

ii) it also allows one to handle the size of the generated tensors, based on the number of the group's

components, and/or the number of the parallel batches. This functionality is provided with subtle

changes to the argument names, namely the presence of underscore symbols before and/or after the

argument name. Examples of its use are present in the code section reported above, where the

arguments u, u0, and w are written respectively as _u_, _u0_, and w__.

The rules applied by the data parser are the following:

11

1. Underscores before and/or after the argument names instruct SHIP to interpret the data as a

generator function.

2. SHIP provides the eventual generator function with specific secondary arguments, determined

on the basis of the underscore configuration:

i. One underscore after the argument name (viz. arg_) instructs SHIP to provide the

generator function with the number of components (of the group)

ii. Two underscores after the argument name (viz. arg__) provide the argument generator

function with the number of components of both (a) the source and (b) target groups

iii. One underscore before the argument name (viz. _arg) provides the argument generator

function with the batch size as its argument.

iv. After- and before- underscore configurations can be combined

3. Depending on the datatype of the argument value, SHIP will perform the following:

i. A callable (function) argument value is used as is (with the proviso that the callable can

accept the number of suggested secondary arguments)

ii. A numeric argument value is intended to be copied across a tensor, whose size is stated

by the provided arguments.

Returning to the previous example, we describe how SHIP reads the user-provided instructions:

a. the argument u, expressed as _u_= lambda b,n: [..], tells the data parser that SHIP

will use the lambda function as is, along with two arguments: the batch-size and number-

of-component values

b. the argument u0, expressed as _u0_ = 0., tells the data parser to instruct SHIP to generate

a bi-dimensional tensor of zeros, of size batch-size, number-of-components of the group

c. the argument w, expressed as w__ = rand, tells the data parser to instruct SHIP to use the

rand function, along with the number-of-components of both source and target groups as

arguments.

This notation may not be immediately understandable. However, we deem this feature to be highly

efficient in setting arbitrarily-generated distributions, onto the parameters of the network. This in turn

can be remarkably useful to rapidly vary sets of parameters during the validation stage of the modelled

system or to collect results as a function of parameter variations along predetermined parameter ranges.

4 Drift model and calculation of the synaptic parameters

In the circuit design proposed in (Esmanhotto et al., 2022), two memristors regulate the conductance

of the inputs of an operational amplifier, whose output would be proportional to the differential reading

of the conductance of the memristors (i.e. the operational amplifier is configured as a differential

amplifier). In this scheme, drift affects the reading of both inverting and non-inverting inputs.

Our model has been obtained from the experimental data fitting. It proposes a time and set-state

dependency of each memristor drift as a normal distribution of mean 𝝁 and standard deviation 𝝈. Our

resulting set of equations is proposed below:

 Supplementary Material

 12

𝝁(𝒕, 𝑮𝟎) = (𝑮𝟎 < 𝒂) ∙ ((𝒃𝑮𝟎 − 𝒄)𝒍𝒐𝒈𝟏𝟎(𝒕) + 𝒅𝑮𝟎 + 𝒆) + (𝑮𝟎 ≥ 𝒂) ∙ (−𝒍𝒐𝒈𝟏𝟎(𝒕)𝒇 + 𝑮𝟎)

[𝝈/𝝁](𝒕, 𝝈𝟎) = (𝒈[𝝈/𝝁]𝟎 − 𝒉)𝒍𝒐𝒈𝟏𝟎(𝒕) − 𝒊[𝝈/𝝁]𝟎 + 𝒋

[𝝈/𝝁]𝟎(𝑮𝟎) = 𝒌 +
𝒍

𝑮𝟎 − 𝒎

with the numerical values for each of the symbolic parameters (units in square brackets) shown in

Table 2. The parameter 𝑮𝟎 refers to the as-written conductance, at t=0.

We note that the above equations reliably reproduce the portrayed experimental data, and allow to

interpolate the memristor behavior as a function of time, and the as-written conductance state (at t=0).

Due to the fit process and result, this model reliability is comprised between 0.5 and 10000 seconds.

Table 2. Numerical values of the parameters used in our bespoke drift model, derived from the

experimental data shown in (Esmanhotto et al., 2022).

𝒂 [𝝁S] 𝒃 [1] 𝒄 [𝝁S] 𝒅 [1] 𝒆 [𝝁S] 𝒇 [𝝁S] 𝒈 [1]

64.41 0.2302 15.24 0.9546 4.82 0.4129 1.047

𝒉 [1] 𝒊 [1] 𝒋 [1] 𝒌 [1] 𝒍 [𝝁S] 𝒎 [𝝁S]

0.006294 0.01677 0.005473 0.005127 0.85543 38.72

In our simulation, we calculate the drift of both inverting and non-inverting memristors, assuming that

for the positive (negative) case the memristor located at the non-inverting (inverting) branch is set to

the minimal value of 50 𝜇S. A maximal value of 120 𝜇S is also assumed.

To calculate the network parameters as a function of the elapsed time, the as-written network

parameters are globally shifted and scaled so that zeros and maximal values match the minimal and

maximal conductance values respectively. These values serve as the required 𝑮𝟎 parameter. The new

conductance is then calculated as the differential contribution between the 𝑮(𝒕) values of the inverting

and non-inverting channels, randomly generated according to a normal distribution using the mean

𝝁(𝒕, 𝑮𝟎) and standard deviation 𝝈 = 𝜇(𝑡, 𝐺0) ∙ [𝜎/𝜇](𝑡, [𝜎/𝜇]0(𝐺0)) yielded by the drift model. The

new conductance is then shifted-rescaled into the network weight parameter, using the inverse of the

transformation originally used to calculate 𝑮𝟎.

5 Algorithm performance optimization

We here explore in a few more detail the computational efficiency of SHIP, which we tuned to be most

efficient form moderately-sized networks of arbitrary complexity. For this scope, we can use the

benchmark script published by Open Neuromorphic organization (Open Neuromorphic, 2023), which

allows us to compare the performance on the same task of several available platforms (we here use

RockPool, Sinabs, and snnTorch as comparison standpoints). We remark that the comparison here

reported is limited in scope (measuring the numerical optimization of the algorithm for the forward

and backward calls on plausible networks), as it merely measures one of the many possible metrics

that is unfeasible to collapse into a single value (and is therefore prone to subjectivity (Yik et al.,

2023)). We therefore consider the following results as purely indicative.

The benchmark script measures the calculation time of the Forward call (i.e. inference simulation,

platform-dictated) and the Backward call (i.e. gradient calculation). The latter is solved entirely by

13

PyTorch, but its complexity also depends on the optimization of i) the Forward operation, and ii) the

backward function differentiation. The task is carried out for 500 steps on a simple feed-forward

network composed of two N-sized layers (a linear layer and a LIF neuron layer), end-to-end connected,

stimulated by a (externally-generated) Poissonian spiking input. In SHIP, we instate a network using

the inputN, the wireS and the lifN classes, which perform an equivalent task as the one proposed

in the benchmark. We measure the calculation time for a set of N values ranging from 1024 to 16384,

so to gather a larger picture of the platform performance based on the network size. This strategy also

attempts to widen the otherwise limited scope of the simulation task, which is here restricted to a single

case scenario.

The results are shown in Figure S3.

Figure S3. Calculation time for the forward (red) and backward (blue) pass of several platforms

(RockPool, Sinabs, snnTorch, SHIP) as a function of the network size (ranging from 1024 to 16384;

indicated along the plotted bars). The performance has been measured by way of the benchmark script

proposed by the Open Neuromorphic organization (Open Neuromorphic, 2023).

Figure S3 plots the forward and backward time for each N-value/platform (note the log-log scale). The

bars are grouped by platform, to ease the reading of the data. The results we gathered show that all

platforms see an increase in the calculation time as the network size grows. In particular for SHIP, we

note that it has a relatively low gross calculation time, up to and including the N value of 4096 neurons.

Additionally, like snnTorch, the Backward time results are lower at low N values, but scale poorly as

the network size increases (which in contrast RockPool and Sinabs manage better). The gathered results

demonstrate that SHIP is best optimized for the simulation of the inference and training of small

networks.

We also reiterate that the network complexity has a relatively marginal influence on the algorithm

performance (see Section 2.1.3 of the manuscript), as the algorithm merely traverses the time axis and

group list to carry out the advance_timestep method of each group (this strategy removes any

further operation dependent on the architecture).

 Supplementary Material

 14

We can therefore derive that SHIP has been optimized as intended. The results we gathered, and the

algorithm strategy of choice, indicate that SHIP is suitable for the prototyping task on small networks

of arbitrary complexity, on accessible workstations without GPU acceleration.

We further explore the plausible performance of SHIP outside its intended scope, simulating the

forward call (inference) on a medium-sized network. We limit the task to the forward operation, on a

5-layer LIF neuron – 1st order leaky synapse network, counting 106 parameters, for 1000 time-steps.

This task requires ~5.8 seconds to reach completion in SHIP. Identical results are obtained with a single

recurrently-connected layer SNN architecture, again counting 106 parameters (as expected). An

equivalent task is carried out on RockPool, which has been already shown to have a better optimization

for larger networks; and on Brian2, a well-documented ODE solver tuned for SNN simulations, chosen

as it adopts a different solver approach to both SHIP and RockPool. This task requires ~69.6 seconds

to solve in Brian2, and ~1.6 seconds to solve in RockPool. From this result, we infer that SHIP may

be still used for medium-sized networks, though one must expect a relatively longer computational

time than the one of available alternatives.

We remark that the computational time gap must be read in light of the characteristics of each platform,

as discussed extensively in the manuscript. Brian2 can solve very generally-posed problems in the form

of ODE systems, enabling one with an unparalleled degree of flexibility. Optimization of this task

however is not easily attainable, thus one has to renounce performance. In contrast, RockPool offers

numerous modules for fast prototyping of SNNs, but requires case-specific encoding where arbitrary

neuronal and synaptic models are employed (especially in the case of recurrent architectures). SHIP

offers a solution mid-way in this spectrum; it retains sufficient flexibility of use for the simulation of

SNN systems, as its model can be used in a plug-and-play fashion (akin to Brian2, though in SHIP

models can not be explicitly set as ODE systems); yet it retains a performance comparable to the one

of RockPool.

6 Funding

This work has been funded via the EU-Horizon2020 research project MeM-Scales

(www.memscales.eu), grant no. 871371.

7 References

Ahmad, N., Isbister, J. B., Smithe, T. S. C., and Stringer, S. M. (2018). Spike: A GPU Optimised

Spiking Neural Network Simulator. bioRxiv. doi: 10.1101/461160.

Alevi, D., Stimberg, M., Sprekeler, H., Obermayer, K., and Augustin, M. (2022). Brian2CUDA:

Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs. Front.

Neuroinform. 16, 883700. doi: 10.3389/fninf.2022.883700.

Bard, G. (1996). XPPAUT: X-windows Phase Plane plus Auto. Available at:

https://sites.pitt.edu/~phase/bard/bardware/xpp/xpp.html.

Bautembach, D., Oikonomidis, I., Kyriazis, N., and Argyros, A. (2020). Faster and Simpler SNN

Simulation with Work Queues. in 2020 International Joint Conference on Neural Networks

(IJCNN) (IEEE), 1–8. doi: 10.1109/IJCNN48605.2020.9206752.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D., et al. (2014).

15

Nengo: a Python tool for building large-scale functional brain models. Front. Neuroinform. 7,

48. doi: 10.3389/fninf.2013.00048.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long short-term

memory and learning-to-learn in networks of spiking neurons. in Advances in Neural

Information Processing Systems 2018, 787–797. Available at:

https://proceedings.neurips.cc/paper_files/paper/2018/file/c203d8a151612acf12457e4d67635a9

5-Paper.pdf.

Bichler, O., Briand, D., Gacion, V., Bertelone, B., Allenet, T., and Thiele, J. C. (2017). N2D2-neural

network design & deployment. Available at: https://cea-list.github.io/N2D2-docs/index.html.

Bower, J. M., and Beeman, D. (2007). “Constructing Realistic Neural Simulations with GENESIS,”

in Neuroinformatics. Methods in Molecular BiologyTM, vol 401 (Humana Press), 103–125. doi:

10.1007/978-1-59745-520-6_7.

Brivio, S., Ly, D. R. B., Vianello, E., and Spiga, S. (2021). Non-linear Memristive Synaptic

Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks. Front. Neurosci.

15, 580909. doi: 10.3389/fnins.2021.580909.

Büller, M. B. (2020). Supervised Learning in Spiking Neural Networks. Available at:

http://resolver.tudelft.nl/uuid:256f7044-862d-4b53-b395-973dadbb7a00.

Carrillo, R. R., Ros, E., Barbour, B., Boucheny, C., and Coenen, O. (2007). Event-driven simulation

of neural population synchronization facilitated by electrical coupling. Biosystems 87, 275–280.

doi: 10.1016/j.biosystems.2006.09.023.

Crone, J. C., Vindiola, M. M., Yu, A. B., Boothe, D. L., Beeman, D., Oie, K. S., et al. (2019).

Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator. Front. Neuroinform.

13, 69. doi: 10.3389/fninf.2019.00069.

Cruz-Camacho, E., Qian, S., Shukla, A., McGlohon, N., Rakheja, S., and Carothers, C. D. (2022).

Evaluating Performance of Spintronics-Based Spiking Neural Network Chips using Parallel

Discrete Event Simulation. in SIGSIM Conference on Principles of Advanced Discrete

Simulation (New York, NY, USA: ACM), 69–80. doi: 10.1145/3518997.3531025.

Drewes, R. (2005). Modeling the brain with NCS and Brainlab. LINUX J. online. Available at:

https://www.linuxjournal.com/article/8038.

Drewes, R., Zou, Q., and Goodman, P. H. (2009). Brainlab: A Python toolkit to aid in the design,

simulation, and analysis of spiking neural networks with the neocortical simulator. Front.

Neuroinform. 3, 16. doi: 10.3389/neuro.11.016.2009.

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., et al. (2021). Training

Spiking Neural Networks Using Lessons From Deep Learning. arXiv Prepr. arXiv2109.12894.

Esmanhotto, E., Hirtzlin, T., Bonnet, D., Castellani, N., Portal, J.-M., Querlioz, D., et al. (2022).

Experimental Demonstration of Multilevel Resistive Random Access Memory Programming for

up to Two Months Stable Neural Networks Inference Accuracy. Adv. Intell. Syst. 4, 2200145.

doi: 10.1002/aisy.202200145.

 Supplementary Material

 16

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). SpikingJelly. Available at:

https://github.com/fangwei123456/spikingjelly.

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). NeMo: A Platform for Neural

Modelling of Spiking Neurons Using GPUs. in 2009 20th IEEE International Conference on

Application-specific Systems, Architectures and Processors (IEEE), 137–144. doi:

10.1109/ASAP.2009.24.

Frostig, R., Johnson, M. J., and Leary, C. (2018). Compiling machine learning programs via high-

level tracing. in Systems for Machine Learning 2018 (SysML). Available at:

https://mlsys.org/Conferences/doc/2018/146.pdf.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia 2, 1430.

doi: 10.4249/scholarpedia.1430.

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T., et al. (2018).

BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python. Front.

Neuroinform. 12, 89. doi: 10.3389/fninf.2018.00089.

Hines, M., Carnevale, T., and McDougal, R. A. (2020). “NEURON Simulation Environment,” in

Encyclopedia of Computational Neuroscience (New York, NY: Springer New York), 1–7. doi:

10.1007/978-1-4614-7320-6_795-2.

Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M., and Harris, F. C. (2013). A novel

CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Front.

Neuroinform. 7, 19. doi: 10.3389/fninf.2013.00019.

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing Neuronal Network

Models in Massively Parallel Environments. Front. Neuroinform. 11, 30. doi:

10.3389/fninf.2017.00030.

Kaiser, J., Mostafa, H., and Neftci, E. (2020). Synaptic Plasticity Dynamics for Deep Continuous

Local Learning (DECOLLE). Front. Neurosci. 14, 424. doi: 10.3389/fnins.2020.00424.

Lenz, G., and Sheik, S. (2020). SINABS. Available at: https://gitlab.com/aiCTX/sinabs.

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006). Parallel network

simulations with NEURON. J. Comput. Neurosci. 21, 119–129. doi: 10.1007/s10827-006-7949-

5.

Mo, L., Chen, X., and Wang, G. (2021). EDHA: Event-Driven High Accurate Simulator for Spike

Neural Networks. Electronics 10, 2281. doi: 10.3390/electronics10182281.

Mo, L., and Tao, Z. (2022). EvtSNN: Event-driven SNN simulator optimized by population and pre-

filtering. Front. Neurosci. 16, 944262. doi: 10.3389/fnins.2022.944262.

Moyal, R., Einhorn, M., Forest, J., Borthakur, A., and Cleland, T. A. (2021). Sapicore. Available at:

https://github.com/cplab/sapicore.

17

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., and Masquelier, T. (2019). SpykeTorch: Efficient

Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron.

Front. Neurosci. 13, 625. doi: 10.3389/fnins.2019.00625.

Muir, D. R., Bauer, F., and Weidel, P. (2019). Rockpool Documentation. doi:

10.5281/zenodo.3773845.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate Gradient Learning in Spiking Neural

Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks.

IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595.

Niedermeier, L., Chen, K., Xing, J., Das, A., Kopsick, J., Scott, E., et al. (2022). CARLsim 6: An

Open Source Library for Large-Scale, Biologically Detailed Spiking Neural Network

Simulation. in 2022 International Joint Conference on Neural Networks (IJCNN) (IEEE), 1–10.

doi: 10.1109/IJCNN55064.2022.9892644.

Open Neuromorphic (2023). Available at: https://open-neuromorphic.org/.

Paredes-Valles, F., Scheper, K. Y. W., and de Croon, G. C. H. E. (2020). Unsupervised Learning of a

Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events to Global

Motion Perception. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2051–2064. doi:

10.1109/TPAMI.2019.2903179.

Pecevski, D., Kappel, D., and Jonke, Z. (2014). NEVESIM: event-driven neural simulation

framework with a Python interface. Front. Neuroinform. 8, 70. doi: 10.3389/fninf.2014.00070.

Pehle, C., and Pedersen, J. E. (2021). Norse - A deep learning library for spiking neural networks.

doi: 10.5281/zenodo.4422025.

Plagge, M., Carothers, C. D., Gonsiorowski, E., and Mcglohon, N. (2018). NeMo. ACM Trans.

Model. Comput. Simul. 28, 1–25. doi: 10.1145/3186317.

Poggio, T., Knoblich, U., and Mutch, J. (2010). CNS: a GPU-based framework for simulating

cortically-organized networks. Available at: http://hdl.handle.net/1721.1/51839.

Rasmussen, D. (2019). NengoDL: Combining Deep Learning and Neuromorphic Modelling

Methods. Neuroinformatics 17, 611–628. doi: 10.1007/s12021-019-09424-z.

Richter, M., Williams, M. G. K., Plank, P., Shrestha, S. B., Risbud, S. R., Weidel, P., et al. (2021).

Intel’s Neuromorphic Computing Lab. Lava: A Software Framework for Neuromorphic

Computing. Available at: https://github.com/lava-nc/lava.

Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., and Agís, R. (2006). Event-Driven Simulation

Scheme for Spiking Neural Networks Using Lookup Tables to Characterize Neuronal

Dynamics. Neural Comput. 18, 2959–2993. doi: 10.1162/neco.2006.18.12.2959.

Sherfey, J. S., Soplata, A. E., Ardid, S., Roberts, E. A., Stanley, D. A., Pittman-Polletta, B. R., et al.

(2018). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Front.

Neuroinform. 12, 10. doi: 10.3389/fninf.2018.00010.

 Supplementary Material

 18

Shrestha, S. B., and Orchard, G. (2018). Slayer: Spike layer error reassignment in time. in Advances

in Neural Information Processing Systems 2018, 31. Available at:

https://proceedings.neurips.cc/paper_files/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed

-Paper.pdf.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and efficient neural

simulator. Elife 8, e47314. doi: 10.7554/eLife.47314.

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020). Brian2GeNN: accelerating spiking

neural network simulations with graphics hardware. Sci. Rep. 10, 410. doi: 10.1038/s41598-019-

54957-7.

Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Linares-Barranco, B. (2017). An Event-

Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor

Data. Front. Neurosci. 11, 350. doi: 10.3389/fnins.2017.00350.

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a code generation approach to

neural simulations on parallel hardware. Front. Neuroinform. 9, 19. doi:

10.3389/fninf.2015.00019.

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework for accelerated

brain simulations. Sci. Rep. 6, 18854. doi: 10.1038/srep18854.

Yik, J., Ahmed, S. H., Ahmed, Z., Anderson, B., Andreou, A. G., Bartolozzi, C., et al. (2023).

NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and

Representative Benchmarking. arXiv Prepr. arXiv2304.04640.

Zenke, F., and Gerstner, W. (2014). Limits to high-speed simulations of spiking neural networks

using general-purpose computers. Front. Neuroinform. 8, 76. doi: 10.3389/fninf.2014.00076.

Zimmer, R., Pellegrini, T., Singh, S. F., and Masquelier, T. (2019). Technical report: supervised

training of convolutional spiking neural networks with PyTorch. arXiv Prepr. arXiv1911.10124.

