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1 Available emulation platforms 

In the table below, we report a non-exhaustive list of the numerical tools that can be directly employed 

or adapted to the simulation of Spiking Neural Networks (SNNs). This table collects the numerical 

tools available at the date of writing, limited to the open source ones that offer a maintained or at least 

non-deprecated version. It details 37 numerical tools, added to the one here illustrated. The table sorts 

the entries by year of publication of the first release. A legend is provided in caption. 

N
a

m
e 

Y
ea

r 
o

f 
1

st
  

re
le

a
se

 

S
u

m
m

a
ry

 o
f 

th
e 

ke
y 

ch
a

ra
ct

er
is

ti
cs

 

P
h

il
o

so
p

h
y 

M
o

d
el

 

 

T
em

p
o

ra
l 

p
ro

g
re

ss
 

L
a

n
g

u
a
g

e 

en
vi

ro
n

m
en

t 

G
P

U
 /

 

d
is

tr
ib

u
te

d
 c

o
m

p
u

ti
n

g
 

GENESIS 

(Bower and 

Beeman, 

2007) 

1
9

8
8
 

It is devised to emulate 

biological neurons and networks 

with high resolution; it uses 

empirical models of neurons and 

synapses, and it enables 

individually configurable 

parameters and connectivity. 

MD DIF. m-CD 
GENESIS 

Script 

DIS. 

(Crone et 

al., 2019) 

XPPAUT 

(Bard, 1996) 1
9

9
6
 

Originally devised as a general-

purpose numerical tool for 

simulating and analyzing 

dynamical systems, it can also be 

used for small-sized SNNs. 

MD DIF. (f,v)-CD 

Stand-alone 

program;  

C libraries 

can improve 

handling or 

performance 

CPU only* 

NEURON 

(Hines et al., 

2020) 

1
9

9
7
 

Similar in philosophy to 

GENESIS.  
MD DIF. (f,v)-CD 

HOC, 

Python 

GPU, 

(Migliore 

et al., 

2006), 

DIS. 

mailto:emanuele.gemo@mdm.imm.cnr.it
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NCS 

(Drewes, 

2005; Hoang 

et al., 2013) 
2

0
0

0
 (

v
er

. 
1

) 

Parallel computation-centered 

SNN simulator, proposed to 

tackle the emulation of 

simplified (single-compartment 

neuronal models, templated 

behavioral patterns, etc.), yet 

realistic, biological systems. 

Brainlab (Drewes et al., 2009) 

adds a more user-friendly Python 

interface. 

MD TD f*-CD 
C/C++, 

Python 

GPU/ 

DIS. 

EDLUT 

(Ros et al., 

2006) 

2
0

0
6
 

It tackles the emulation of 

biological/biologically inspired 

networks via the use of look-up 

tables, possibly generated by 

external solvers (Carrillo et al., 

2007), reducing the otherwise 

costly solution of the differential 

equation systems of the 

(available) neurons’ models 

MD DIF.  
CD/ 

ED 

C/C++, 

Python 

GPU (CD; 

ED 

algorithm 

works on 

CPU only) 

NEST 

(Gewaltig 

and 

Diesmann, 

2007) 

2
0

0
7
 

General purpose emulator, best 

addressing the analysis of the 

network’s dependency on 

neuron/synapse models and 

architectural parameters 

MD/ 

DD m
o

d
el

 

d
ep

en
d

en
t 

v*-CD 
SLI, C/C++, 

Python 

DIS. 

(Ippen et 

al., 2017) 

CARLSim 
(Niedermeier 

et al., 2022) 

2
0

0
9
 Similar in philosophy to NEST, 

it natively supports GPU-

accelerated calculations 

MD DIF. v-CD 
C/C++, 

Python 
GPU 

NeMo 

(Fidjeland et 

al., 2009) 

2
0

0
9
 

A CUDA-based platform for 

emulation of large biological 

networks, that is focused on 

using the Izhikevich neuron 

model for large but sparsely 

connected networks.  

MD TD* m-CD 

C/C++, 

Python, 

MATLAB 

GPU 

CNS 

(Poggio et 

al., 2010) 

2
0

1
0
 

Data-driven analysis tool with 

model-driven elements; CNS is a 

parallel-computing oriented 

platform, proposed for large 

networks, including biological 

(Hodgkin-Huxley model based) 

ones. It can handle the neuron 

connectivity automatically, by 

way of spatial coordinates. 

MD/ 

DD 

m
o

d
el

 d
ep

en
d

en
t*

 

f*-CD 
C/C++, 

MATLAB 
GPU 

GeNN 

(Yavuz et 

al., 2016) 

2
0

1
1
 

It proposes a library to generate 

efficient CUDA code from a 

simplified custom model 

building interface, intended to 

accelerate the emulation of 

biological-oriented SNNs. 

MD 

m
o

d
el

 

d
ep

en
d

en
t 

f*-CD 

C/C++, 

CUDA, 

Python 

GPU 



 
3 

N2D2 

(Bichler et 

al., 2017) 

2
0

1
3
 

It’s been purposely developed to 

design and emulate deep neural 

networks, in particular dedicated 

to the integration in embedded 

systems. It can be adapted to 

emulate inference and local-rule-

based training of spiking 

networks, see e.g. (Brivio et al., 

2021) 

MD/ 

DD 

m
o

d
el

 d
ep

en
d

en
t 

d
ep

en
d

en
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o
n
 t

h
e 

im
p

le
m

en
ta

ti
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C/C++ GPU 

Nengo 

(Bekolay et 

al., 2014) 

2
0

1
4
 

Conceptually similar to PyNN, it 

proposes a simplified 

environment to generate and 

simulate large-scale networks 

based on available or user-

defined neuron and synapse 

models. NengoDL (Rasmussen, 

2019) is a dedicated fork to the 

integration of deep learning 

techniques in Nengo (derived 

from TensorFlow)  

MD/ 

DD 
TD (f,v)-CD Python 

G
P

U
 (

R
as

m
u

ss
en

, 
2

0
1

9
) 

Auryn 

(Zenke and 

Gerstner, 

2014) 

2
0

1
4

  

Simulation environment focused 

on studying plastic spiking 

recurrent neural networks of 

small-to-medium sizes. 

 

 

 

MD TD 

H
y

b
ri

d
 (

f-
C

D
, 

w
it

h
 E

D
 w

ei
g

h
t 

u
p

d
at

es
) 

C/C++ DIS. 

Brian 2 

(Stimberg et 

al., 2019) 

2
0

1
4

 (
v

er
. 
1

) 

General purpose environment, 

that provides tools to i) generate 

neurons and synapse models via 

defining a system of differential 

equations, and ii) to arrange such 

devices and analyze the 

emerging network behavior. 

 

 

MD DIF. 

f-
C

D
 (

E
D

 a
v

ai
la

b
le

 

w
h

en
 u

si
n

g
 l

in
ea

r 

eq
u

at
io

n
s)

 
Python 

G
P

U
 (

d
ep

en
d

en
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o
n

 

ex
te

ra
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so
lv

er
s 

se
s 

(S
ti

m
b

er
g

 e
t 

al
.,

 2
0

2
0

; 

A
le

v
i 

et
 a

l.
, 

2
0

2
2

))
  

NEVESIM 

(Pecevski et 

al., 2014) 

2
0

1
4
 Proposes a simplified 

environment for the 

construction, simulation and 

analysis of neural models. 

MD TD 

E
D

 (
C

D
 i

s 

al
lo

w
ed

) 

C/C++, 

Python 
CPU-only 

ANNarchy 

(Vitay et al., 

2015)  

2
0

1
5
 

It draws elements from the 

PyNN environment interface and 

the Brian model definition 

interface. It allows one to 

efficiently emulate spiking 

networks and their training via 

STP (short-term plasticity) or 

STDP (spike-timing dependent 

plasticity) 

MD DIF. f-CD 
Python, 

C/C++ 
GPU 
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MegaSim 

(Stromatias 

et al., 2017) 
2

0
1

6
 

Tool addressing the event-driven 

simulation of hardware systems, 

strongly addressing the 

simulator performance. It relies 

on a strongly modular and 

compartmentalized vision of the 

modeled components. STDP-

learning rules and vision-

dataset-oriented modules are 

available. 

MD/ 

DD 
TD 

E
D

 (
th

o
u

g
h

 a
 c

lo
ck

 

m
o

d
u

le
 c

an
 b

e 
in

cl
u

d
ed

) 

C/C++ CPU only 

BindsNET 

(Hazan et 

al., 2018) 

2
0

1
8
 

Environment that is dependent 

on the PyTorch datatypes, which 

are used as the mathematical 

framework to define models for 

neurons, synapses, and learning 

rules.  

DD TD f-CD 
Python 

(PyTorch) 
GPU 

DynaSim 

(Sherfey et 

al., 2018) 

2
0

1
8
 

It enables defining of new 

neurons and synapse models 

either via their differential 

equation systems or via the 

combining of already-available 

models. It natively supports tools 

to post-process the emulated 

network results, e.g. investigate 

how the simulated network 

behavior varies according to 

predetermined architectural 

parameters. 

MD DIF. (f,v)-CD MATLAB DIS. 

SPIKE 

(Ahmad et 

al., 2018) 

2
0

1
8
 

Simulation-speed optimized, 

GPU-enabled, SNN emulator for 

bio-inspired network analysis, 

that provides few commonly 

adopted neuron, synapse, and 

learning rule models. 

 

 

MD TD 

f-
C

D
 (

a 
ti
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te
p

 

g
ro

u
p
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g
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h
n
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u
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p
ro
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) 

C/C++, 

CUDA 
GPU 

LSNN 

(Bellec et 

al., 2018) 

2
0

1
8
 

Set of Tensorflow-based 

libraries adapted to the 

emulation and training of 

recurrent SNNs, based on an 

adaptive leaky integrate and fire 

model.  

MD/ 

DD 
TD f-CD 

Python 

(Tensorflow) 
GPU 

cuSNN 

(Paredes-

Valles et al., 

2020) 

2
0

1
8
 

Environment defining a small 

selection of learning rules, 

neuron or synapse models and 

layers, which combined enable 

one with the GPU-accelerated 

emulation of large SNNs 

MD/ 

DD 
TD f-CD 

C/C++, 

CUDA 
GPU 



 
5 

Slayer 

(Shrestha 

and Orchard, 

2018) 
2

0
1

8
 

Framework centered on the data-

driven emulation of SNNs and 

their synaptic weight/axon delay 

training based on a modified 

error backpropagation 

technique. Currently being 

integrated into a more 

comprehensive set of 

functionalities for the Lava 

environment (Richter et al., 

2021). 

DD TD f*-CD 

C/C++, 

CUDA, 

Python 

GPU 

RockPool 

(Muir et al., 

2019) 

2
0

1
9
 

A platform aimed to bridge the 

gap between the design and 

emulation of a spiking network 

(here viewed as a more general 

dynamical system), and training 

of such network by use of deep-

learning methods. It is suited to 

designing SNN hardware 

specifically. Models of devices, 

subnetworks, and learning 

methods can be defined or 

imported from other platforms 

(e.g. PyTorch, Jax (Frostig et al., 

2018), Brian 2) 

MD/ 

DD 

T
D

/D
IF

 (
as

 i
t 

in
cl

u
d

es
 B

ri
an

2
 a

n
d

 

Ja
x

 m
o

d
el

 s
u

p
p
o

rt
) 

f-CD 

Python 

(PyTorch is 

supported) 

GPU 

SpykeTorch 

(Mozafari et 

al., 2019) 

2
0

1
9
 

Pytorch extension optimized 

towards the emulation of STDP 

and R-STDP feed-forward SNNs 

using the time-to-first-spike data 

encoding. 

DD TD f-CD 
Python 

(PyTorch) 
GPU 

PySNN 

(Büller, 

2020) 

2
0

1
9
 Another take on integrating 

PyTorch with SNN emulation 

functionalities, comprising a set 

of local learning rules. 

DD TD f-CD 
Python 

(PyTorch) 
GPU 

s2net 

(Zimmer et 

al., 2019) 

2
0

1
9
 

PyTorch implementation of 

dense and convolutional SNN 

LIF (Leaky Integrate and Fire) 

layers, reliant on the surrogate 

gradient-based (Neftci et al., 

2019) conventional DNN 

training methods 

DD TD f-CD 
Python 

(PyTorch) 
GPU 

sinabs  

(Lenz and 

Sheik, 2020) 

2
0

1
9
 

Similarly to RockPool, this 

framework is intended to aid the 

design and deployment of SNNs, 

with a narrower focus on vision 

datasets and broader reliance on 

the PyTorch syntax and its DNN 

learning routines. 

DD TD f-CD 
Python 

(PyTorch) 
GPU 

DECOLLE 

(Kaiser et 

al., 2020) 

2
0

2
0
 

A narrow-focused framework 

that uses PyTorch libraries to 

implement both SNN emulation 

functionalities and the proposed 

DEep COntinuous Local 

Learning (DECOLLE) rule.  

MD/ 

DD 
TD  f-CD 

Python 

(PyTorch) 
GPU 
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Spice 

(Bautembach 

et al., 2020) 

2
0

2
0
 

GPU-reliant, clock-driven SNN 

simulation approach, oriented 

towards increasing the 

performance metrics (limited to 

a single workstation) 

 

 

 

DD TD 

f-
C

D
 (

u
si

n
g

 

ti
m

es
te

p
 g

ro
u

p
in

g
 

as
 i

n
 S

P
IK

E
) 

C/C++, 

CUDA 
GPU 

Spiking 

Jelly 

(Fang et al., 

2020) 

2
0

2
0
 

A comprehensive set of libraries 

expanding PyTorch with the 

SNN emulation functionality, 

along with data handling and 

conversion. 

DD TD f-CD 
Python 

(PyTorch) 
GPU 

Sapicore 

(Moyal et 

al., 2021) 

2
0

2
1
 

Minimal environment reliant on 

a PyTorch computational back-

end. Similarly to SHIP, it’s been 

primarily developed with the 

view to facilitate the modeling of 

neuromorphic elements (and 

their integration with PyTorch), 

by way of a set of high-level 

functions and classes. 

MD/ 

DD 

M
o

d
el

 d
ep

en
d

en
t 

M
o

d
el

 d
ep

en
d

en
t 

Python 

(PyTorch) 

G
P

U
 (

p
o

te
n

ti
al

; 

d
ep

en
d

en
t 

o
n
 t

h
e 

u
se

r 

im
p

le
m

en
ta

ti
o

n
) 

Norse 

(Pehle and 

Pedersen, 

2021) 

2
0

2
1
 

PyTorch extension, oriented to 

gather the results of simulated 

SNNs inference and bio-inspired 

learning processes; it has been 

designed with a strong 

orientation towards sparse 

computing techniques to better 

interface with event-based 

inputs. 

MD/ 

DD 
TD f-CD 

Python 

(PyTorch) 
GPU 

Lava 

(Richter et 

al., 2021) 

2
0

2
1
 

Environment enabling one to 

design and test SNN hardware 

with an application-oriented 

philosophy, providing several 

neuron models, tools aiding the 

definition of network topologies, 

and IO circuitry. It can natively 

run simulations on CPUs, GPUs, 

and neuromorphic hardware. 

MD/ 

DD 
TD 

H
y

b
ri

d
 (

E
D

 m
es

sa
g

e 

p
ar

si
n

g
, 

m
-C

D
 m

o
d

el
 

ev
al

u
at

io
n

) 

Python GPU 

snnTorch 

(Eshraghian 

et al., 2021) 

2
0

2
1
 

An alternative implementation 

of spiking layer functionalities to 

be employed within the PyTorch 

environment, comprehensive of 

a set of surrogate gradient 

functions to enable DNN 

learning techniques. 

DD TD f-CD 
Python 

(PyTorch) 
GPU 

EvtSNN 

(Mo and 

Tao, 2022) 

2
0

2
2
 

Based on a previous release, the 

EDHA simulator (Mo et al., 

2021). EvtSNN is an improved 

version of an event-driven 

simulator; it is optimized for the 

training of LIF-based networks 

by use of the STDP learning rule. 

MD TD ED Java, C/C++ CPU only 



 
7 

Doryta 

(Cruz-

Camacho et 

al., 2022) 
2

0
2

2
 

Successor of NeMo (Plagge et 

al., 2018); Doryta has been 

developed to enable one with 

both simulation of hardware-

based SNNs (by way of 

simplified models), and analysis 

of the results to gather a few 

potential performance metrics. 

 

 

MD/ 

DD 
TD 

f*
-C

D
/ 

E
D

 (
o

n
ly

 w
h

er
e 

n
eu

ro
n

s 

h
av

e 
p
o

si
ti

v
e 

le
ak

 v
al

u
es

) 

C/C++ DIS. 

SHIP 

(this work) 2
0

2
3
 

SHIP has been developed to 

facilitate the simulation of 

hardware SNN systems, by way 

of compact models. 

It fosters features suited for the 

analysis and performance 

assessment of the emulated 

architectures, also integrating 

PyTorch machine-learning 

techniques, currently leveraging 

the surrogate gradient technique 

(Neftci et al., 2019) 

MD/ 

DD 
TD 

(f
,m

)-
C

D
 (

m
u

lt
ip

le
 t

im
e
-s

te
p

 

si
ze

s 
ca

n
 b

e 
p

re
d

et
er

m
in

ed
 t

o
 

ca
rr

y
 o

u
t 

th
e 

si
m

u
la

ti
o

n
 t

as
k

) 

Python 

(PyTorch) 
GPU 

Table 1. Panoramic of the available open-source numerical tools enabling one to carry out emulation 

of hardware-based SNN systems. Legend: MD – model-driven approach; DD – data-driven approach; 

TD – time-discrete equation system model; DIF. – differential equation system model; CD – clock-

driven temporal handling (f- fixed, v- variable, m- multi-clock); ED – event-driven temporal handling; 

DIS. – distributed computing available.  *Data unclear or missing in the available references; tabulated 

data interpreted from the source code. 

2 Group sorting algorithm 

Here we provide few more details to explain the rationale behind the objective function of the proposed 

sorting algorithm, and its practical functioning. 

Objective function: reduction of the delay-substituted DAM LTS lower triangular sum 

The algorithm's main goal is to find the group order so that, during the simulation, it lowers the count 

of events breaking the causal correlation or inducing computational artifacts (due to the non-negligible 

effect of the time-step size). For feedforward networks the task is trivial as the groups are inherently 

hierarchically-sorted (each finds a single source, and a single target). However, the same task is more 

difficult for recurrent networks, in which groups may find multiple sources and targets. 

To define a unique method to efficiently linearize arbitrarily-complex networks, we evaluated the 

hypothetical edge scenarios for which a candidate solution consistently leads to the most suitable 

sorting orders. We have found that the best solution leverages the delay time values, decreasing the 

total of the negative-valued delays. This approach directly minimizes the count of possible artifacts, in 

which groups “hang” waiting for a late, expected input. 

Here follows a practical example to show the potential effect of an arbitrary, un-mediated linearization. 

Let’s assume a circularly connected network AB, with delay times AB = 0 and BA =1, simulated using 

timesteps of size 1. Each group relays any input to the connected ones (as in the case of a low-threshold 

LIF neuron). We omit discussing the synaptic connections for sake of simplicity, integrating the delay 
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effect in the A and B groups. We start with a signal being delivered from A (noting that an analogous 

version of the events happens when starting with B).  

The network linearized as AB (LTS of 0) behaves as follows (a picture is found in Figure S1): 

• at t=0, the signal travels from A to B, is received from B, and sent back to A (with a delay of 

1) 

• at t=1, A receives the delayed signal from B and sends it back to B; B receives the signal and 

sends it to A (with a delay, not received) 

• at t>1, the chain of events follows the one of t=1; the network “spikes” at a frequency of 2 

relays per timestep. 

 

Figure S1. Behavior of the ideal circularly-connected AB network, linearized as A-B. Left: delay-

substituted DAM. Right: schematic representation of the system temporal evolution. Data transfer is 

depicted using black arrow (solid for zero-valued delay, double-lined for 1-valued delays). 

The network linearized as BA (LTS of 1) sees the following (a picture is reported in Figure S2): 

• at t=0, the signal travels from A to B (not received) 

• at t=1, B receives the signal from A (with an artifact delay of 1, tracked as a red arrow in Figure 

S2), and sends it back to A with a delay of 1 (A does not receive the signal) 

• at t>1, the chain of events follows the one of t=1; the network “spikes” at a frequency of 1 relay 

per timestep, halved with respect to the ideal behavior. 

 

Figure S2. Behavior of the ideal circularly-connected AB network, linearized as B-A. Left: delay-

substituted DAM. Right: schematic representation of the system temporal evolution.  Data transfer is 

depicted using black arrow (solid for zero-valued delay, double-lined for 1-valued delays). Red arrows 

track the computational artifact events. 

The two linearizations yield different outputs, with the former correctly reproducing the continuous-

time representation of the circular system; and the latter not merely being shifted in time, but seeing 

an effective reduction by half of the relaying frequency, due to the computational artifacts (red arrows). 

Whilst simplistic, this example is effective in demonstrating the main practical issues arising from a 

non-mediated linearization of the system. 
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Sorting algorithm functioning/computational requirement 

We here summarize the algorithm's practical functioning. Given N source-target group pairs, the 

algorithm performs the following: 

i) calculates all potential contributions to the LTS for all N pairs,  

ii) calculates the LTS for all N2 arrangement and swaps of the pairs, 

iii) sorts the N2-wide list of sequences (by increasing LTS value); and only then,  

iv) progressively evaluates each sequence (with at most N sums and logical statement 

evaluations) until finding the earliest feasible one.  

We reiterate that the low-LTS sequence is used to set the IO addresses of each group, thus the 

calculation is performed once. 

Strategies are put in place to avoid the evaluation of the whole N-long sequence, if unfeasible elements 

within each sequence are identified (e.g. having A before B, B before C, and then C before A). Even 

assuming N>100 (which is unlikely given the scope of the platform), the worst-case scenarios would 

reasonably see the algorithm carrying out less than a hundred sums and logical statement evaluations, 

for a few tens of thousands of sequences. The total runtime of this algorithm is likely within a single 

second, even with dated hardware. In more practical scenarios, the computational impact of this 

algorithm is irrelevant. 

3 SHIP interface: an explained practical example 

For sake of completeness, we report the code that generates the data shown in Figure 8b of the main 

article. This piece of code hopefully exemplifies the main features of SHIP interface, and the potential 

results that can be attainable through its use.  We then use this example to further demonstrate an useful 

feature embedded within the SHIP interface, which allows one to use a synthetic notation to state a 

wide range of value distributions (as arguments of each group instation). 

The code generating the data in Figure 8b is as follows: 

# import classes and functions 
from SHIP import (network, # network class 
                  inputN, # input neuron class 
                  lS_1o, # 1st order leaky synapse class 
                  lifN, # LIF neuron class 
                  refractory) # refractory superclass 
from torch import (manual_seed, 
                   rand, 
                   arange, 
                   zeros, 
                   normal) 
# preliminary ops, determining emulated time and other minor details 
eps = 1e-6 #small number 
batch_size = 10 #number of parallel simulations 
time, dt = .1, 1e-4 #emulated time [seconds], time-step size [seconds] 
nts = int(time//dt + time%dt) #number of time-steps 
ns = [3,1] #network neuron layer size 
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# input generation 
rate = 20 #[Hz] 
manual_seed(3000) 
poisson_input = (rand(nts,ns[0])<(rate*dt)).expand(batch_size,nts,ns[0]) 
# define network 
snn = network() 
# add neuron groups 
snn.add(inputN, #add input_neuron group 
        'I', #group tag (mandatory) 
        N = ns[0]) #number of units within the group 
snn.add(refractory(lifN), 'N1', N = ns[1], #add refractory LIF group 
        tau_beta = arange(10e-3,100e-3+eps,10e-3).unsqueeze(-1),  

  #temporal constant [s] 
        thr = 1.,#threhshold potential [a.u] 
        _u_ = lambda b,n: 
normal(zeros(n),1).abs().unsqueeze(0).expand(b,n),  
        #potential at t = 0 [a.u.] 
        _u0_ = 0., #rest/reset potential 
        refr_time = 10e-3) #refractory time [seconds] 
# add synaptic group 
snn.add(lS_1o, 'S1', source = 'I', target = 'N1', #add synapse group 
        w_scale = 150, #synaptic weight global scaling factor 
        tau_alpha = 5e-3, #temporal constant [s] 
        delay_time = 0e-3, #delay time 
        w__ = rand) # synaptic weight matrix 
 
# init network and monitors 
snn.set_monitor(**{'S1':['output','I'],'N1':['u','output']}) 
snn.init(dt = dt, nts = nts, batch_size = batch_size) 
# run simulation and gather data 
snn.run(poisson_input) # run emulation 
data = snn.get_monitored_results() # gather data 

Using the script example above, we discuss a practical feature of SHIP which we believe being 

extremely useful during the network building stage, though too technical to be highlighted within the 

manuscript. SHIP has the option to parse the arguments of the group class as a generator function, 

which can be called to yield dynamically-generated data. This feature is helpful for two reasons: i) it 

allows one to re-generate data according to arbitrary distributions, every time the network is initialized; 

ii) it also allows one to handle the size of the generated tensors, based on the number of the group's 

components, and/or the number of the parallel batches. This functionality is provided with subtle 

changes to the argument names, namely the presence of underscore symbols before and/or after the 

argument name. Examples of its use are present in the code section reported above, where the 

arguments u, u0, and w are written respectively as _u_, _u0_, and w__.  

The rules applied by the data parser are the following: 
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1. Underscores before and/or after the argument names instruct SHIP to interpret the data as a 

generator function. 

2. SHIP provides the eventual generator function with specific secondary arguments, determined 

on the basis of the underscore configuration: 

i. One underscore after the argument name (viz. arg_) instructs SHIP to provide the 

generator function with the number of components (of the group) 

ii. Two underscores after the argument name (viz. arg__) provide the argument generator 

function with the number of components of both (a) the source and (b) target groups 

iii. One underscore before the argument name (viz. _arg) provides the argument generator 

function with the batch size as its argument. 

iv. After- and before- underscore configurations can be combined 

3. Depending on the datatype of the argument value, SHIP will perform the following: 

i. A callable (function) argument value is used as is (with the proviso that the callable can 

accept the number of suggested secondary arguments) 

ii. A numeric argument value is intended to be copied across a tensor, whose size is stated 

by the provided arguments. 

Returning to the previous example, we describe how SHIP reads the user-provided instructions: 

a. the argument u, expressed as _u_= lambda b,n: [..], tells the data parser that SHIP 

will use the lambda function as is, along with two arguments: the batch-size and number-

of-component values 

b. the argument u0, expressed as _u0_ = 0., tells the data parser to instruct SHIP to generate 

a bi-dimensional tensor of zeros, of size batch-size, number-of-components of the group 

c. the argument w, expressed as w__ = rand, tells the data parser to instruct SHIP to use the 

rand function, along with the number-of-components of both source and target groups as 

arguments. 

This notation may not be immediately understandable. However, we deem this feature to be highly 

efficient in setting arbitrarily-generated distributions, onto the parameters of the network. This in turn 

can be remarkably useful to rapidly vary sets of parameters during the validation stage of the modelled 

system or to collect results as a function of parameter variations along predetermined parameter ranges. 

4 Drift model and calculation of the synaptic parameters 

In the circuit design proposed in (Esmanhotto et al., 2022), two memristors regulate the conductance 

of the inputs of an operational amplifier, whose output would be proportional to the differential reading 

of the conductance of the memristors (i.e. the operational amplifier is configured as a differential 

amplifier). In this scheme, drift affects the reading of both inverting and non-inverting inputs.  

Our model has been obtained from the experimental data fitting. It proposes a time and set-state 

dependency of each memristor drift as a normal distribution of mean 𝝁 and standard deviation 𝝈. Our 

resulting set of equations is proposed below: 
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𝝁(𝒕, 𝑮𝟎) = (𝑮𝟎 < 𝒂) ∙ ((𝒃𝑮𝟎 − 𝒄)𝒍𝒐𝒈𝟏𝟎(𝒕)  + 𝒅𝑮𝟎 + 𝒆)  +  (𝑮𝟎 ≥ 𝒂) ∙ (−𝒍𝒐𝒈𝟏𝟎(𝒕)𝒇 + 𝑮𝟎)  

[𝝈/𝝁](𝒕, 𝝈𝟎) = (𝒈[𝝈/𝝁]𝟎 − 𝒉)𝒍𝒐𝒈𝟏𝟎(𝒕) − 𝒊[𝝈/𝝁]𝟎 + 𝒋 

[𝝈/𝝁]𝟎(𝑮𝟎) = 𝒌 +
𝒍

𝑮𝟎 − 𝒎
 

 

with the numerical values for each of the symbolic parameters (units in square brackets) shown in 

Table 2. The parameter 𝑮𝟎 refers to the as-written conductance, at t=0.  

We note that the above equations reliably reproduce the portrayed experimental data, and allow to 

interpolate the memristor behavior as a function of time, and the as-written conductance state (at t=0). 

Due to the fit process and result, this model reliability is comprised between 0.5 and 10000 seconds. 

 

Table 2. Numerical values of the parameters used in our bespoke drift model, derived from the 

experimental data shown in (Esmanhotto et al., 2022). 

𝒂 [𝝁S] 𝒃 [1] 𝒄 [𝝁S] 𝒅 [1] 𝒆 [𝝁S] 𝒇 [𝝁S] 𝒈 [1] 

64.41 0.2302 15.24 0.9546 4.82 0.4129 1.047 

𝒉 [1] 𝒊 [1] 𝒋 [1] 𝒌 [1] 𝒍 [𝝁S] 𝒎 [𝝁S]  

0.006294 0.01677 0.005473 0.005127 0.85543 38.72 

 

In our simulation, we calculate the drift of both inverting and non-inverting memristors, assuming that 

for the positive (negative) case the memristor located at the non-inverting (inverting) branch is set to 

the minimal value of 50 𝜇S. A maximal value of 120 𝜇S is also assumed. 

To calculate the network parameters as a function of the elapsed time, the as-written network 

parameters are globally shifted and scaled so that zeros and maximal values match the minimal and 

maximal conductance values respectively. These values serve as the required 𝑮𝟎 parameter. The new 

conductance is then calculated as the differential contribution between the 𝑮(𝒕) values of the inverting 

and non-inverting channels, randomly generated according to a normal distribution using the mean 

𝝁(𝒕, 𝑮𝟎) and standard deviation 𝝈 = 𝜇(𝑡, 𝐺0) ∙ [𝜎/𝜇](𝑡, [𝜎/𝜇]0(𝐺0)) yielded by the drift model. The 

new conductance is then shifted-rescaled into the network weight parameter, using the inverse of the 

transformation originally used to calculate 𝑮𝟎. 

5 Algorithm performance optimization 

We here explore in a few more detail the computational efficiency of SHIP, which we tuned to be most 

efficient form moderately-sized networks of arbitrary complexity. For this scope, we can use the 

benchmark script published by Open Neuromorphic organization (Open Neuromorphic, 2023), which 

allows us to compare the performance on the same task of several available platforms (we here use 

RockPool, Sinabs, and snnTorch as comparison standpoints). We remark that the comparison here 

reported is limited in scope (measuring the numerical optimization of the algorithm for the forward 

and backward calls on plausible networks), as it merely measures one of the many possible metrics 

that is unfeasible to collapse into a single value (and is therefore prone to subjectivity (Yik et al., 

2023)). We therefore consider the following results as purely indicative.  

The benchmark script measures the calculation time of the Forward call (i.e. inference simulation, 

platform-dictated) and the Backward call (i.e. gradient calculation). The latter is solved entirely by 
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PyTorch, but its complexity also depends on the optimization of i) the Forward operation, and ii) the 

backward function differentiation. The task is carried out for 500 steps on a simple feed-forward 

network composed of two N-sized layers (a linear layer and a LIF neuron layer), end-to-end connected, 

stimulated by a (externally-generated) Poissonian spiking input. In SHIP, we instate a network using 

the inputN, the wireS and the lifN classes, which perform an equivalent task as the one proposed 

in the benchmark. We measure the calculation time for a set of N values ranging from 1024 to 16384, 

so to gather a larger picture of the platform performance based on the network size. This strategy also 

attempts to widen the otherwise limited scope of the simulation task, which is here restricted to a single 

case scenario.  

The results are shown in Figure S3. 

 

Figure S3. Calculation time for the forward (red) and backward (blue) pass of several platforms 

(RockPool, Sinabs, snnTorch, SHIP) as a function of the network size (ranging from 1024 to 16384; 

indicated along the plotted bars). The performance has been measured by way of the benchmark script 

proposed by the Open Neuromorphic organization (Open Neuromorphic, 2023). 

Figure S3 plots the forward and backward time for each N-value/platform (note the log-log scale). The 

bars are grouped by platform, to ease the reading of the data. The results we gathered show that all 

platforms see an increase in the calculation time as the network size grows. In particular for SHIP, we 

note that it has a relatively low gross calculation time, up to and including the N value of 4096 neurons. 

Additionally, like snnTorch, the Backward time results are lower at low N values, but scale poorly as 

the network size increases (which in contrast RockPool and Sinabs manage better). The gathered results 

demonstrate that SHIP is best optimized for the simulation of the inference and training of small 

networks.  

We also reiterate that the network complexity has a relatively marginal influence on the algorithm 

performance (see Section 2.1.3 of the manuscript), as the algorithm merely traverses the time axis and 

group list to carry out the advance_timestep method of each group (this strategy removes any 

further operation dependent on the architecture).  
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We can therefore derive that SHIP has been optimized as intended. The results we gathered, and the 

algorithm strategy of choice, indicate that SHIP is suitable for the prototyping task on small networks 

of arbitrary complexity, on accessible workstations without GPU acceleration. 

We further explore the plausible performance of SHIP outside its intended scope, simulating the 

forward call (inference) on a medium-sized network. We limit the task to the forward operation, on a 

5-layer LIF neuron – 1st order leaky synapse network, counting 106 parameters, for 1000 time-steps. 

This task requires ~5.8 seconds to reach completion in SHIP. Identical results are obtained with a single 

recurrently-connected layer SNN architecture, again counting 106 parameters (as expected).  An 

equivalent task is carried out on RockPool, which has been already shown to have a better optimization 

for larger networks; and on Brian2, a well-documented ODE solver tuned for SNN simulations, chosen 

as it adopts a different solver approach to both SHIP and RockPool. This task requires ~69.6 seconds 

to solve in Brian2, and ~1.6 seconds to solve in RockPool.  From this result, we infer that SHIP may 

be still used for medium-sized networks, though one must expect a relatively longer computational 

time than the one of available alternatives.  

We remark that the computational time gap must be read in light of the characteristics of each platform, 

as discussed extensively in the manuscript. Brian2 can solve very generally-posed problems in the form 

of ODE systems, enabling one with an unparalleled degree of flexibility. Optimization of this task 

however is not easily attainable, thus one has to renounce performance. In contrast, RockPool offers 

numerous modules for fast prototyping of SNNs, but requires case-specific encoding where arbitrary 

neuronal and synaptic models are employed (especially in the case of recurrent architectures). SHIP 

offers a solution mid-way in this spectrum; it retains sufficient flexibility of use for the simulation of 

SNN systems, as its model can be used in a plug-and-play fashion (akin to Brian2, though in SHIP 

models can not be explicitly set as ODE systems); yet it retains a performance comparable to the one 

of RockPool. 
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