APPENDIX Table A. Papers on Wearables for Learning Classified by Manner of Use | | Manner of Wearable Use: Capture data to inform learning | | | | | | | | | | |----|---|--|------|---------------|--------------------|---|---------------------|-------------------------------|--|--| | # | Authors | Paper Title | Year | Paper
Type | Wearable
Types | Subject
Areas | Population
Type | Settings | | | | 1 | Buchem et al. | Designing for User Engagement in
Wearable-technology Enhanced
Learning for Healthy Ageing | 2015 | Design | Smart
wristband | Health | Students | None | | | | 2 | Buchem et al. | Gamification Designs in Wearable
Enhanced Learning for Healthy
Ageing | 2015 | Design | Smart
wristband | Health | Students | Anywhere | | | | 3 | Chu et al. | Toward Wearable App Design for
Children's In-the-World Science
Inquiry | 2017 | Study | Smartwatch | Science | Students | Lab,
Anywhere | | | | 4 | Ciolacu et al. | Education 4.0 - Jump to Innovation with IoT in Higher Education | 2019 | Study | Smartwatch | Health | Students | Anywhere | | | | 5 | Ciolacu et al. | Enabling IoT in Education 4.0 with
BioSensors from Wearables and
Artificial Intelligence | 2019 | Study | Smartwatch | Math, General | Students | School | | | | 6 | Coffman and
Klinger | Google Glass: Using Wearable
Technologies to Enhance Teaching
and Learning | 2015 | Study | Smart glasses | Educational psychology, Organizational behavior | Students + teachers | School | | | | 7 | Ezenwoke et al. | Wearable Technology: Opportunities and Challenges for Teaching and Learning in Higher Education in Developing Countries | 2016 | Study | Smart glasses | Accounting | Teachers | School | | | | 8 | Garcia et al. | Wearables for Learning: Examining the Smartwatch as a Tool for Situated Science Reflection | 2018 | Study | Smartwatch | Science | Students | Anywhere,
School | | | | 9 | Giannakos et al. | Monitoring Children's Learning
Through Wearable Eye-Tracking:
The Case of a Making- Based
Coding Activity | 2019 | Study | Smart glasses | Programming;
Electronics | Students | Workshop | | | | 10 | Giannakos et al. | Fitbit for learning: Towards capturing the learning experience using wearable sensing | 2020 | Study | Smart
wristband | Software engineering | Students | School | | | | 11 | Grunerbl et al. | Monitoring and enhancing nurse emergency training with wearable devices | 2015 | Design | Smartwatch | Health | Students | None | | | | 12 | Ishimaru et al. | Towards an intelligent textbook:
eye gaze-based attention extraction
on materials for learning and
instruction in physics | 2016 | Study | Smart glasses | Physics | Students | School | | | | 13 | Lu et al. | Harnessing Commodity Wearable Devices to Capture Learner Engagement | 2019 | System | Smart
wristband | General | Students + teachers | School | | | | 14 | Di Mitri et al. | Learning Pulse: Using Wearable
Biosensors and Learning Analytics
to Investigate and Predict Learning
Success in Self-regulated Learning | 2016 | Study | Sensors | Learning | Students | None | | | | 15 | Park et al. | Design of a wearable sensor badge for smart kindergarten | 2002 | System | Badge | General | Students | None | | | | 16 | Pijeira-Diaz et
al. | Investigating collaborative learning success with physiological coupling indices based on electrodermal activity | 2016 | Study | Smart
wristband | Science | Students | Lab set up
as
classroom | | | | 17 | Pijeira-Diaz et
al. | Sympathetic arousal commonalities and arousal contagion during collaborative learning: How attuned are triad members? | 2019 | Study | Smart
wristband | Physics | Students | School | |----------------------------|---|---|--------------------------------------|---------------------------------|--|---|---|---------------------------| | 18 | Prieto et al. | Teaching Analytics: Towards
Automatic Extraction of
Orchestration Graphs Using
Wearable Sensors | 2016 | Study | Sensors,
Smart glasses | Math | Teachers | Lab | | 19 | Russell et al. | First "Glass" Education: Telementored Cardiac Ultrasonography Using Google Glass- A Pilot Study | 2014 | Study | Smart glasses | Medicine | Students | Lab | | 20 | Scholl et al. | Wearable digitization of life science experiments | 2014 | Design | Smart glasses | Science | Students | None | | 21 | Spann and
Schaeffer | Expanding the scope of learning analytics data: preliminary findings on attention and self-regulation using wearable technology | 2017 | Study | Smart
wristband | Cybersecurity | Students | Learning center | | 22 | Steele and
Steele | Applying affective computing techniques to the field of special education | 2014 | Theory | General | Writing | Students | None | | 23 | Sung et al. | MIT.EDU: M-learning
Applications for Classroom
Settings | 2004 | System | Custom
device | Finance, Business, Digital Anthropology | Students + teachers | School | | 24 | Sung et al. | Mobile-IT Education (MIT.
EDU):m-learning applications for
classroom settings | 2005 | System | Custom
device | Finance, Business, Digital Anthropology | Students + teachers | School | | 25 | Teeters | Use of a Wearable Camera System in Conversation: Toward a Companion Tool for SocialEmotional Learning in Autism | 2007 | Thesis | Custom
device | N/A | Students | N/A | | | Manner of V | Vearable Use: <i>Guide embod</i> | ied beh | aviors | | | | | | | Authors | Paper Title | Year | Paper
Type | Wearable
Types | Subject
Areas | Population
Type | Settings | | 2.5 | | Ballet hero: building a garment for | | | | | | | | 26 | Hallam et al. | memetic embodiment in dance learning | 2014 | Design | Clothing | Dancing | Students + teachers | Dance
hall | | 26 | Hallam et al. Huang et al. | memetic embodiment in dance
learning PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills | 2014 | Design
Study | Clothing | Dancing Music | | | | | | memetic embodiment in dance learning PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills MusicJacket: the efficacy of realtime vibrotactile feedback for learning to play the violin | | | - | | teachers | hall | | 27 | Huang et al. | memetic embodiment in dance learning PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills MusicJacket: the efficacy of realtime vibrotactile feedback for learning to play the violin Wearable sensors in medical education: supporting hand hygiene training with a forearm EMG | 2008 | Study | Gloves | Music | teachers Students | hall
None | | 27 | Huang et al. Johnson et al. | memetic embodiment in dance learning PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills MusicJacket: the efficacy of realtime vibrotactile feedback for learning to play the violin Wearable sensors in medical education: supporting hand hygiene | 2008 | Study | Gloves Smart wristband Clothing Gloves | Music Music | Students Students | None Lab | | 27
28
29 | Huang et al. Johnson et al. Kutafina et al. | memetic embodiment in dance learning PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills MusicJacket: the efficacy of realtime vibrotactile feedback for learning to play the violin Wearable sensors in medical education: supporting hand hygiene training with a forearm EMG Passive haptic learning for vibrotactile skin reading Detecting strumming action while playing guitar | 2008
2010
2015 | Study Study System | Gloves Smart wristband Clothing | Music Music Medicine | Students Students Students | None Lab None | | 27
28
29
30 | Huang et al. Johnson et al. Kutafina et al. Luzhnica et al. Matsushita and | memetic embodiment in dance learning PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills MusicJacket: the efficacy of realtime vibrotactile feedback for learning to play the violin Wearable sensors in medical education: supporting hand hygiene training with a forearm EMG Passive haptic learning for vibrotactile skin reading Detecting strumming action while | 2008
2010
2015
2018 | Study Study System Study | Gloves Smart wristband Clothing Gloves Custom device; | Music Music Medicine Skin reading | Students Students Students Students Students | None Lab None Lab | | 27
28
29
30
31 | Huang et al. Johnson et al. Kutafina et al. Luzhnica et al. Matsushita and Iwase Myllykoski et | memetic embodiment in dance learning PianoTouch: A Wearable Haptic Piano Instruction System for Passive Learning of Piano Skills MusicJacket: the efficacy of realtime vibrotactile feedback for learning to play the violin Wearable sensors in medical education: supporting hand hygiene training with a forearm EMG Passive haptic learning for vibrotactile skin reading Detecting strumming action while playing guitar Prototyping hand-based wearable | 2008
2010
2015
2018
2013 | Study Study System Study System | Gloves Smart wristband Clothing Gloves Custom device; Clothing | Music Music Medicine Skin reading Music | Students Students Students Students Students Students Students Students + | None Lab None Lab Lab | | | | augmented reality and wearable | | | | | | | |----|----------------------|---|---------|---------------|-------------------------------|--|---------------------|------------------------------------| | 35 | Seim et al. | computing devices Passive haptic learning of Braille typing | 2014 | Study | Gloves | Typing | Students | Lab | | 36 | Seim et al. | Towards haptic learning on a smartwatch | 2018 | Study | Smartwatch | Morse code | Students | Lab | | 37 | Spelmezan | An investigation into the use of tactile instructions in snowboarding | 2012 | Study | Custom
device;
Clothing | Snowboardin g | Students | Indoor ski
resort | | | Manner of | Wearable Use: Guide the sti | ructure | of learn | ing | | | | | | Authors | Paper Title | Year | Paper
Type | Wearable
Types | Subject
Areas | Population
Type | Settings | | 38 | Arroyo et al. | Wearable learning: Multiplayer embodied games for math | 2017 | Study | Smartwatch | Math | Students | School | | 39 | Bower and
Sturman | What are the educational affordances of wearable technologies? | 2015 | Study | Smart
glasses | General | Teachers | None | | 40 | Cheng and
Tsai | A case study of immersive virtual field trips in an elementary classroom: Students' learning experience and teacher-student interaction behaviors | 2019 | Study | Smart
glasses | Social studies | Students | School | | 41 | Dieck et al. | Enhancing art gallery visitors'
learning experience using wearable
augmented reality: generic learning
outcomes perspective | 2018 | Study | Smart
glasses | Art | Students | Art gallery | | 42 | Engen et al. | Wearable Technologies in the K-12
Classroom- Cross-disciplinary
Possibilities and Privacy Pitfalls | 2018 | Study | Smart
wristband | Physical education; Social studies; Math | Students | School | | 43 | Hatami | A study on students attitude toward employing smart glasses as a medium for e-learning | 2016 | Thesis | Smart
glasses | Language | Students | Campus;
Home;
Library | | 44 | Kawai et al. | Tsunami Evacuation Drill System
Using Smart Glasses | 2015 | Design | Smart
glasses | Disaster education | Students | School | | 45 | Kazemitabaar et al. | MakerWear: A Tangible Approach
to Interactive Wearable Creation
for Children | 2017 | Study | Clothing | STEM | Students | Museum;
Afterschoo
l program | | 46 | Kommera et al. | Smart Augmented Reality Glasses
in Cybersecurity and Forensic
Education | 2016 | Theory | Smart
glasses | Cybersecurit y; Forensics | Students | None | | 47 | Leue et al. [46] | Google Glass Augmented Reality:
Generic Learning Outcomes for
Art Galleries | 2015 | Study | Smart
glasses | Art | Students | Art gallery | | 48 | Lindberg et al. | Enhancing Physical Education with Exergames and Wearable Technology | 2016 | Study | Smart
wristband | Physical education | Students | School | | 49 | Liu | Tangram Race Mathematical Game: Combining Wearable Technology and Traditional Games for Enhancing Mathematics Learning | 2014 | Thesis | Custom
device | Math | Students | School | | 50 | Liu and
Chiang | Smart glasses based intelligent trainer for factory new recruits | 2018 | System | Smart
glasses | Industrial
tasks | Students | Lab set up as factory | | 51 | Lukowicz et al. | Glass-physics: using google glass
to support high school physics
experiments | 2015 | Study | Smart
glasses | Physics | Students | Lab | | 52 | Moshtaghi et
al. | Using Google Glass to Solve
Communication and Surgical
Education Challenges in the
Operating Room | 2015 | Study | Smart
glasses | Medicine;
Surgery | Students + teachers | Surgical
room | | 53 | Scholl et al. | Wearables in the wet lab: a laboratory system for capturing and guiding experiments | 2015 | System | Smart
glasses;
Smartwatch | Science | Students | School | |----------|-------------------------------|--|----------|---------------|---|---------------------|---------------------|-------------------------------| | 54 | Shadiev et al. | Study of the use of wearable devices for healthy and enjoyable English as a foreign language learning in authentic contexts | 2018 | Study | Smartwatch | Language | Students | School | | 55 | Spitzer et al. | Distance Learning and
Assistance Using Smart Glasses | 2018 | Study | Smart
glasses | Industrial tasks | Teachers | Lab | | 56 | Spitzer et al. | Project Based Learning: from the Idea to a Finished LEGO Technic Artifact, Assembled by Using Smart Glasses | 2017 | Study | Smart
glasses | Industrial
tasks | Students | Lab | | 57 | Spitzer et al. | Use cases and architecture of an information system to integrate smart glasses in educational environments | 2016 | Theory | Smart
glasses | Knitting | Students + teachers | Lab | | 58 | Vallurupalli et al. | Wearable technology to improve
education and patient outcomes
in a cardiology fellowship
program- a feasibility study | 2013 | Study | Smart
glasses | Medicine | Students | None | | 59 | Vishkaie | Can wearable technology improve children's creativity? | 2018 | Study | General | General | Students | Lab | | 60 | Weppner et al. | Physics Education with Google
Glass gPhysics Experiment App | 2014 | System | Smart
glasses | Physics | Students | None | | | Manner of Wes | arable Use: Guide student | s' class | room be | haviors | • | | • | | | Authors | Paper Title | Year | Paper
Type | Wearable
Types | Subject
Areas | Population
Type | Settings | | 61 | Watanabe and Yano | Using wearable sensor badges to improve scholastic performance | 2013 | Study | Badge | General | Students + teachers | School | | 62 | Zheng and Motti | Assisting students with intellectual and developmental disabilities in inclusive education with smartwatches | 2018 | Design | Smartwatch | General | Students | School | | 63 | Zheng and Motti | Wearable Life: A Wrist-Worn
Application to Assist Students in
Special Education | 2017 | Design | Smartwatch | General | Students + teachers | Learning center | | | Manner of Wes | arable Use: Help teachers | to lear | n about | the class or | the student | ts | | | | Authors | Paper Title | Year | Paper
Type | Wearable
Types | Subject
Areas | Population
Type | Settings | | 64 | de la Guia et al. | Introducing IoT and wearable technologies into task-based language learning for young children | 2016 | Study | Smartwatch | Language | Students | Lab set up
as
classroom | | | | | | | | | | | | 65 | Holstein et al. | The Classroom as a Dashboard: Co-designing Wearable Cognitive Augmentation for K-12 Teachers | 2018 | Study | Smart
glasses | General | Teachers | Lab | | 65
66 | Holstein et al. Kumar et al. | Co-designing Wearable
Cognitive | 2018 | Study Theory | | General General | Teachers Teachers | Lab | | | | Co-designing Wearable Cognitive Augmentation for K-12 Teachers Use of smart glasses in education - a study Wearable Computers and Big Data: Interaction Paradigms for Knowledge Building in Higher Education | | | glasses
Smart | | | | | 66 | Kumar et al. Llorente and | Co-designing Wearable Cognitive Augmentation for K-12 Teachers Use of smart glasses in education - a study Wearable Computers and Big Data: Interaction Paradigms for Knowledge Building in Higher | 2018 | Theory | glasses Smart glasses Smartwatch; Smart | General | Teachers | None | | 70 | Pirkl et al. | Any Problems? a wearable sensorbased platform for representational learning-analytics | 2016 | Study | Smartwatch | Physics | Students | Lab | | | | |----|--|--|----------|---------------|-----------------------------------|------------------|---------------------|--------------------------------|--|--|--| | 71 | Quintana et al. | Keeping Watch: Exploring
Wearable Technology Designs for
K-12 Teachers | 2016 | Study | Smartwatch | Astronomy | Teachers | School | | | | | 72 | Ueda and Ikeda | Stimulation Methods for Students'
Studies using Wearable
Technology | 2016 | System | Smartwatch;
Smart
wristband | General | Students + teachers | School | | | | | | Manner of Wearable Use: Make knowledge visible | | | | | | | | | | | | | Authors | Paper Title | Year | Paper
Type | Wearable
Types | Subject
Areas | Population
Type | Settings | | | | | 73 | Knight et al. | Wearable technology: using
Google Glass as a teaching tool | 2015 | Study | Smart
glasses | Medicine | Teachers | Surgical
room | | | | | 74 | Kuhn et al. | gPhysics- Using Smart Glasses for
Head-Centered, Context-Aware
Learning in Physics Experiments | 2016 | Study | Smart
glasses | Physics | Students | None | | | | | 75 | Labus et al. | Wearable Computing in EEducation | 2015 | Design | General | General | Students | None | | | | | 76 | Lee et al. | Appropriating Quantified Self
Technologies to Support
Elementary Statistical Teaching and
Learning | 2016 | Study | Smart
wristband | Statistics | Students | School | | | | | 77 | Meyer et al. | Investigating the effect of pretraining when learning through immersive virtual reality and video: A media and methods experiment | 2019 | Study | Smart
glasses | Science | Students | School | | | | | 78 | Norooz | BodyVis: Body Learning Through
Wearable Sensing and
Visualization | 2014 | Thesis | Clothing | Anatomy | Students | Afterschool program | | | | | 79 | Norooz et al. | BodyVis: A New Approach to
Body Learning Through Wearable
Sensing and Visualization | 2015 | Study | Clothing | Science | Students + teachers | Lab;
Afterschool
program | | | | | 80 | Norooz et al. | "That's Your Heart!": Live
Physiological Sensing and
Visualization Tools for Life-
Relevant and Collaborative STEM
Learning | 2016 | Study | Clothing | Health | Students | Afterschool program | | | | | 81 | Pataranutaporn et al. | Wearable Wisdom: An Intelligent
Audio-Based System for Mediating
Wisdom and Advice | 2020 | System | Smart
glasses | General | Students | None | | | | | 82 | Peppler and
Glosson | Learning About Circuitry with Etextiles in After-School Settings | 2013 | Study | Custom
device | Electronics | Students | None | | | | | 83 | Pham and
Hwang | Card-based design combined with
spaced repetition: A new interface
for displaying learning elements
and improving active recall | 2016 | Study | Smartwatch | Language | Students | None | | | | | 84 | Ryokai et al. | EnergyBugs: energy harvesting wearables for children | 2014 | Study | Custom
device | Energy | Students | Summer
camp;
School | | | | | 85 | Thees et al. | Effects of augmented reality on
learning and cognitive load in
university physics laboratory
courses | 2020 | Study | Smart
glasses | Physics | Students | School | | | | | | Manner of V | Wearable Use: As a platform | n to lea | rn STEN | I | | | | | | | | | Authors | Paper Title | Year | Paper
Type | Wearable
Types | Subject
Areas | Population
Type | Settings | | | | | 86 | Brady et al. | All Roads Lead to Computing:
Making, Participatory Simulations,
and Social Computing as Pathways
to Computer Science | 2017 | Study | Custom
device | Programming | Students | School | | | | | 87 | Buechley et al. | Towards a curriculum for electronic textiles in the high school classroom | 2007 | Theory | Clothing | Programming;
Electronics | Students | School;
Workshop | |-----|----------------------|---|-------------|--------|------------------|--|----------|---------------------| | 88 | Burg | A STEM Incubator to Engage
Students in Hands-on, Relevant
Learning: A Report from the Field | 2016 | Study | Custom
device | Programming;
Electronics | Students | School | | 89 | Eisenberg et al. | Invisibility Considered Harmful:
Revisiting Traditional Principles of
Ubiquitous Computing in the
Context of Education | 2006 | Theory | Clothing | Programming | Students | Lab | | 90 | Esakia et al. | Augmenting Undergraduate
Computer Science Education With
Programmable Smartwatches | <u>2015</u> | Study | Smartwatch | Programming | Students | School | | 91 | Gregg et al. | A Modern Wearable Devices
Course for Computer Science
Undergraduates | 2017 | Theory | Custom
device | Electronics | Students | School | | 92 | Jones et al. | Wearable bits: Scaffolding creativity with a prototyping toolkit for wearable e-Textiles | 2020 | Design | Clothing | Design | Students | Workshop | | 93 | Kuznetsov et al. | Breaking boundaries: strategies for mentoring through textile and computing workshops | 2011 | Study | Clothing | Programming | Students | Workshop | | 94 | Lau et al. | Learning programming through
fashion and design: a pilot summer
course in wearable computing for
middle school students | 2009 | Study | Clothing | Programming | Students | Workshop | | 95 | Merkouris et al. | Introducing Computer Programming to Children through Robotic and Wearable Devices | 2015 | Study | Smartwatch | Programming | Students | Lab | | 96 | Merkouris et al. | Teaching Programming in
Secondary Education Through
Embodied Computing Platforms:
Robotics and Wearables | 2017 | Study | Custom
device | Programming | Students | School | | 97 | Ngai et al. | An education-friendly construction platform for wearable computing | 2009 | Design | Clothing | Programming;
Electronics | Students | Summer camp | | 98 | Ngai et al. | i*CATch: a scalable plug-n-play
wearable computing framework for
novices and children | 2010 | Design | Clothing | Programming;
Electronics | Students | Workshop | | 99 | Ngai et al. | Deploying a Wearable Computing
Platform for Computing Education | 2009 | Study | Clothing | Programming;
General
engineering | Students | Summer camp | | 100 | Reichel et al. | Smart Fashion and Learning about Digital Culture | 2006 | Study | Clothing | Programming | Students | None | | 101 | Reichel et al. | Eduwear: Designing Smart Textiles for Playful Learning | 2008 | Design | Clothing | Programming | Students | None | | 102 | Reimann | Shaping Interactive Media with the
Sewing Machine: Smart Textile as
an Artistic Context to Engage Girls
in Technology and Engineering
Education | 2011 | Design | Gloves | Programming | Students | None | | 103 | Reimann and
Maday | Smart Textile objects and conductible ink as a context for arts based teaching and learning of computational thinking at primary school | 2016 | System | Clothing | Programming | Students | None |