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1 SUPPLEMENTARY METHODS

1.1 Data repositories3

The MouseLight database is comprised of ∼ 1500 complete morphological reconstructions of single4
neurons (Economo et al., 2016). These neurons are primarily located in the thalamus, motor cortex,5
subiculum and hypothalamus and their morphologies were reconstructed using a high-throughput procedure6
involving viral projection labeling, high resolution imaging and anatomical segmentation. They first labeled7
single neurons by injecting 56-days-old (P56) male and female wild-type mice with two adeno-associated8
viruses (AAV): low-titer AAV expressing cre-recombinase (AAV Syn-iCre) and high-titer AAV coding9
for a green fluorescent protein (AAV CAG-Flex eGFP/tdTomato). To produce high-resolution images10
containing the labeled neurites, they used serial two-photon tomography with an integrated vibratome. For11
tracing and reconstructing the neurons, they implemented a semi-automated algorithm for the segmentation12
and reconstruction of the soma, axons and dendrites that required manual intervention for distinguishing13
branches at intersection points. A prime example was the capability to identify cell-types with hitherto14
unknown projection patterns, such as in the case of zona incerta and subiculum neurons (Winnubst et al.,15
2019).16

The Braintell database comprises of ∼ 1700 fully reconstructed single-neuron morphologies from cortex,17
claustrum, thalamus, and striatum (Peng et al., 2021). This repository is a product of a pipeline designed for18
labeling, imaging, reconstructing, registering and analyzing single neurons from these areas. To label single19
cells, they used a combination of two mouse transgenic lines, namely GFP-expressing Ai139 or Ai14020
TIGRE2.0 reporter and the TIGRE-MORF reporter (Madisen et al., 2015; Daigle et al., 2018; Veldman21
et al., 2020). This leads to labeling of a sparse number of cells, but for each the complete axonal and22
dendritic arborization is labeled. They performed anterograde tracing on ∼ 140 P56 male and female23
transgenic mice. The brains were imaged using the fluorescence micro-optical sectioning tomography24
(fMOST) imaging platform (Li et al., 2010), which integrates epifluorescence microscopy with a system for25
mechanical sectioning. For each 3D imaged brain, they automatically reconstructed the underlying neuronal26
morphologies using the Vaa3D open source software (Peng et al., 2014), which were then registered to27
CCF with the mBrainAligner tool (Peng et al., 2011).28

They characterized the morphological diversity of the above described areas and identified cell-types that29
could be distinguished by their projection patterns. By analyzing the diversity of these projection types,30
they found that it was correlated by multiple factors including transcriptomic composition, convergence of31
projections, laminar-specificity for cortical neurons and topographical organization.32

For both repositories, the mice were housed in an enriched environment with multiple litter mates.33
However, MouseLight matched litter mates by sex, whereas Braintell did not control for sex. The degree of34
enrichment and gender could have an effect on the morphologies, however, a control analysis showed that35
the VPM morphologies as a population had similar properties.36

1.2 Flatmap visualizations37

Harris et al. developed cortical flatmaps for visualizing in 2D of neuroanatomical data along the cortical38
surface (Harris et al., 2019). They followed the two-step procedure according to which they defined a39
curved cortical coordinate system and then smoothly mapped the cortical surface to a flatmap. For defining40
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the curved coordinate system, they represented the cortical surface in three dimensions, with the first41
two representing the anterior-posterior and right-left axes and the third representing streamlines which42
matched columnar cortical structures and quantified cortical depth. They computed the streamlines by43
using the Laplace equation (Griffiths, 2013) to estimate the orthogonal path between the white matter and44
the pia surface. By averaging streamlines over a specified range of cortical depth, one can then obtain a 2D45
projection of the data.46

For creating the flatmap, they computed the geodesic distance between each surface point and two anchor47
points representing the two axes of the 2D flatmap embedding. The respective the flatmap position of each48
cortical surface point was estimated as the one for which the radial distance from the anchor points in 2D49
was equal to the geodesic distance between the surface point and the anchors in 3D.50

1.3 Segmentation of the barrel cortex51

The primary whisker somatosensory cortex or else known as barrel cortex (SSp-bfd) is involved in52
specialized processing of sensory information that is received from the mystacial vibrissae (Brecht, 2007;53
Diamond et al., 2008; Petersen, 2019; Staiger and Petersen, 2021). The barrel cortex is comprised of54
individual distinct barrels in layer 4, which are horizontally distributed along the anterior-posterior axis.55
Individual whiskers are mapped onto individual barrels resulting in a somatotopic organization with56
specialized functional information processing pathways (Woolsey and Van der Loos, 1970).57

When averaging the STP-intensity volumes representing the gray matter contrast of 1675 brains to58
develop CCF v3.0 (Wang, 2020), individual barrels of the mouse whisker barrel fields became visible in59
layer 4. We validated this when constructing the cortical flatmap visualizations (see Main fig. 7 A for an60
example), because the flatmap intensity was computed by taking the maximum value in the 3D intensity61
volume only across layers 2/3 and 4.62

This finding encouraged us to further proceed in characterizing projection and morphological patterns63
with respect to individual barrels and rather than considering the barrel cortex as a single anatomical64
module. We thus proceeded to label the individual barrels in the flatmaps, infer their positions in the65
original 3D volumes, expand these putative barrels to include their respective cortical columns along the66
entire cortical depth, and lastly analyze barrel-specific projection motifs.67

For labeling individual barrels, we relied on the help of expert neuroanatomists. We created a png image68
of the dorsal cortical flatmap, and asked the anatomists to mark the center of each individual barrel with its69
respective name using the Inkscape software package (Kirsanov, 2009) (see Main fig. 8 A). We then loaded70
the images in a Python script and estimated the 2D coordinates of each labeled barrel center using the xml71
minidom library, which is a Python implementation of the Document Object Model interface (see Main72
table 1).73

We then used the flatmap streamlines to infer the respective positions of each barrel center in the 3D74
volume. Given the coordinates of each barrel center, we selected their respective streamline along the75
cortical depth and estimated the middle voxel across the ones belonging to layer 4. We considered these76
barrel center points as seed points for delineating the remaining volume of each barrel as follows.77

With the seed as the initial point of a given barrel, we first estimated the maximum radius that a sphere78
centered around that point should have, by taking the euclidean distance between its coordinates and79
those of its nearest neighboring seed point. We then specified two exemplary intensity values, which we80
termed core and ring. Core corresponded to points with a distance from the seed less than 10%, and ring81
corresponded to points with a distance from the seed between 45% and 55%, with 100% being equal to the82
maximum radius.83

We then utilized an iterative algorithm for expanding the borders of the barrel until they matched the84
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borders shown in the flatmap. The original borders were defined by all core points of the barrel. For every85
step, the borders were expanded by being dilated with a sphere having a 10 µm radius. For all new points86
added to the volume after dilation, we discarded those having an intensity below a threshold level. The87
threshold level was defined as the average intensity between the core and the ring intensity. The algorithm88
halted when no new point with intensity exceeding the threshold could be added in the barrel volume (see89
Main fig. 8 C).90

Furthermore, we constructed an expanded version of each barrel that would correspond to a full cortical91
column. This was achieved by assigning the label of each barrel to all the voxels belonging to the same92
streamline as the voxels that have already been labeled as part of the barrel. In essence, this operation was93
an expansion of each barrel labeling along the cortical depth axis based on the streamlines computed by94
(Knox et al., 2018) for including all layers beyond 2/3 and 4.95

96

1.4 Dimensionality reduction and Clustering97

Given that the neuronal morphologies are comprised of a variable number of points each, this makes98
statistical comparisons challenging. To account for that, we create a lower dimensional embedding of the99
neurons, in order to visualize and quantify their morphological diversity.100

How can one reduce the dimensions of a dataset, when its data points do not have the same number of101
features, which in this case is the number of axonal points? The solution is given by CPD which, as shown102
in Main section 2.3, allows us to compute the morphological dissimilarity between morphologies. This103
similarity matrix can now be provided to any dimensionality reduction technique as an input, since it is in104
most cases a pre-processing step prior to the reduction of dimensions. For a visually intuitive approach105
of analyzing this morphological dissimilarity, we selected the t-stochastic neighbor embedding (t-SNE)106
non-linear dimensionality algorithm (van der Maaten and Hinton, 2008).107

The non-linear embedding estimated by t-SNE makes it optimal for visualizing the data in two or three108
dimensions in a manner that respects the topological properties of the data. This means that morphologies109
that were similar in the space of the actual data will also be similar in the low dimensional space. We110
embedded the data in two dimensions, given that two dimensions were sufficient in accurately representing111
the proximity in the original space. This was evident by a low Kullback-Leibler divergence value of 0.38,112
as well as when visualizing the distribution of the projection clusters in the two dimensions which were not113
randomly distributed (see Main section 2.4).114

We created scatter plots to illustrate the relationship between the data in the two or three embedded115
dimensions. Scatter plots are the most frequent visualization tool for t-SNE plots, since by using the x- and116
y-axes to represent the embedded dimensions, one can shed light on the distribution of data points and their117
proximity, as well as indicate the presence or absence of distinct clusters of data.118

Instead of the presence of clusters, the t-SNE scatter plot suggested the presence of a morphological119
gradient (Main fig. 7 E), because of the appearance of the data as a continuous curved line. See Main120
section 2.4 for details regarding how we quantified this gradient and correlated it with the projection motifs121
and morphometrical measures of the neurons analyzed in this study. Lastly, we used hierarchical clustering122
to partition the gradient into three distinct morphological clusters. This was done to better understand123
if the various projection-type neurons we have uncovered in this analysis are non-randomly distributed124
along the gradient. Hierarchical clustering is a popular clustering approach that can be used to infer a125
hierarchy between all data points and their respective clusters, which can be visualized as a dendrogram. A126
dendrogram representation can offer an improved interpretability of the result when compared to parametric127
clustering methods (Day and Edelsbrunner, 1984), since it encodes the relationship between data points not128
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being part of the same cluster. Furthermore, neurons can be color-coded based on their clusters to reflect129
their morphological similarity, which can then be overlaid on top of the t-SNE scatter plot to make the130
cluster delineation more visually discernible.131

132

1.5 SBA Composer133

The Scalable Brain Atlas (SBA) Composer is a web-based application for displaying brain imaging,134
volumetric and 3d-object-based data embedded within a number of available brain atlases (Bakker et al.,135
2015). It can be used directly by users or by third party websites as a visualization front-end (see Main table136
1). It uses the anatomical parcellation of the Allen Brain Atlas, the areas of which can be rendered alongside137
the imported data with parameters for color and transparency that can be selected by the user. Moreover,138
the user can use a computer keyboard and mouse to click and navigate by rotating, scaling and translating139
the rendered brain objects along the generated scene. Each registered morphology is integrated to SBA140
by representing connections between the coordinates of its axonal segments as lines. The morphological141
data can be stored in the Extensible 3D (x3d) file format and can be sent to SBA via an Application142
Programming Interface.143
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2 SUPPLEMENTARY TABLES AND FIGURES

2.1 Figures144

Figure S1. Assessing the statistical significance of the uncovered projection motifs. The significance in over- or
under-representation of all multifocal motifs, based on differences between their observed and expected enrichment
in neurons, was tested using the binomial test with Bonferroni correction. The upper panel shows the differences
in enrichment between observed (blue) vs expected (orange) motifs, with each column corresponding to a motif.
The bottom panel is intentionally aligned with the top one, since its column contains the same motif as above,
and illustrates the motifs in a ’checkerboard’-like fashion. All available somatosensory areas are shown to the left
of the rows, while the black and white colors correspond to the presence or absence of a projection by a neuron,
respectively. In the first column for instance, a number of neurons jointly target the barrel field and the supplemental
somatosensory area but not the other areas. The test was originally performed in visual cortex neurons in (Han
et al., 2018). The expected enrichment is the null hypothesis of the test and assumes statistical independence in
the projections of a neuron targeting multiple brain areas. The expected independence value is thus computed by
taking the product between the probabilities of targeting each individual area. In this plot, only significantly over- or
under-represented motifs have been plotted. Motifs with less than four neurons participating were not included.
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Figure S2. Four plots highlighting the distribution of the axonal terminal branch length of each VPM neuron across
all cortical layers expressed in µm that terminates in the barrel field (A), mouth (B), nose (C) and supplemental (D)
somatosensory areas. x-axis: cortical layers. y-axis: index of a neuron sorted by its most strongly targeted layer
in the descending order of laminar depth from 2/3 to 6b, since layer 1 is weakly targeted. Each blue vertical bar
corresponds to the axonal length of a neuron at a given layer that is normalized across all layers. The horizontal
width of a blue bar is proportional to the normalized terminal length and the small wide horizontal gap between the
bars represents the maximum width of each bar. For each somatosensory area, only the first 100 neurons with the
largest length of axonal terminal branches in that area are plotted to emphasize the most dominant projections.
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