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Prediction model 

Background 

In the context of neuroscience, connectivity analysis was proposed to study the correlation or 

causality of BOLD activity between different brain regions (1). It was later extended to measure the 

correlation and causality of EEG brain activity between different electrodes (2), and further extended 

to perform the connectivity between electrodes after undergoing an independent components analysis 

(3), source localization analysis (4), or other multiple electrodes transformation such as spectral PCA 

(5). Thus, connectivity analysis has been done so far between different fMRI regions, or different 

EEG electrodes, and in general, between multiple sources. Here we present connectivity analysis 

between components obtained from a single source - the same EEG channel.  

In Parkinson’s disease (PD), connectivity analysis proved to be a useful tool to establish underlying 

pathophysiology and network connectivity related to the motor and non-motor symptoms of the 

disease. Multiple studies using fMRI-based connectivity analysis give insight into disrupted 

connectivity in the PD patient population. An abnormal activation of different areas of the motor and 

resting state networks in patients with early and late-stage PD was shown to be related to cardinal 

clinical features. For example, it was shown that Parkinson’s tremor-related activity first arises in the 

basal ganglia and is then propagated to the cerebello-thalamo-cortical circuit, determining the role of 

those circuits in initiating and maintaining tremor symptoms (6). Another study suggests that some of 

the factors related to PD patients having difficulty achieving automatic movement are less efficient 

neural coding of movement and failure to shift execution of automatic movements more 

subcortically, and these changes of effective connectivity become more abnormal as the disorder 

progresses (7). Additionally, a great body of evidence exists in the literature discussing the decreased 

functionality of the default mode network (DMN) as part of PD progression. For example, resting 
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state fMRI connectivity revealed a disrupted functional integration in cortico-striatal loops in the 

sensorimotor network in patients with PD (8). Decreased functional connectivity in mesolimbic-

striatal and cortico-striatal loops was found in drug-naïve PD patients compared to healthy controls 

(9). It has also been shown that PD patients with cognitive impairment predominantly showed a 

reduced connectivity in specific brain regions that are part of the default mode network (10). 

EEG connectivity studies have also demonstrated functional connectivity disruptions in PD patients. 

A recent review exploring over 85 such studies concluded that the main observations were a general 

slowing of background activity, excessive synchronization of beta activity, and disturbed movement-

related gamma oscillations in the basal ganglia and in the cortico-subcortical and cortico-cortical 

motor loops (11). 

Methods 

The prediction model used in this study presents connectivity analysis based on a single EEG source. 

This is done by first decomposing the signal into multiple components via a time-frequency optimal 

orthogonal decomposition, and then, performing connectivity analysis on these components. We 

performed an orthogonal decomposition using the Best Basis Algorithm (12) as described in Molcho 

et al., 2022 (13). 

We follow the methodology of BOLD connectivity analysis as described in Fristen et al., 1996 (14), 

but use it on the components decomposed from the single-channel EEG. These components were 

extracted from earlier collected data of multiple subjects performing multiple tasks. The observations 

were in the form of 4-second time windows with a 3 second overlap. Projecting the 121 components 

previously extracted on the data collected in this study lead to 121 time series that are updated once 

per second. From these time series, we obtain a 121x121 connectivity matrix. The matrix can be 

symmetric and indicate correlations between the different time series or non-symmetric and indicate 

directed causality between the components. Here we focus on the symmetric correlation matrix. 

The matrix of correlations that is obtained from each individual patient can be used as an input to a 

machine learning based predictor that is trained by labeled data previously collected (Figure 3 in 

manuscript). It can also be used for a group analysis and visualization of the connectivity of each 

group of patients (see Supplementary Figure 1). To obtain patient population connectivity, we 

averaged the correlation matrix over the group members with a specific clinical diagnosis. Given an 

averaged matrix of correlations between different components, a classical connectivity representation 

(15) is not possible due to the large number of connections to present: 121x60. We resolve this by 

converting the correlation matrix into a matrix of distances between components, such that higher 

correlation reflects a smaller distance, by using: 

dij = e-corr (ci ,cj) 

Then, we project the high dimension space of all correlations (121x120/2 dimensions) onto a two-

dimensional space while preserving the local distance between every two components as much as 

possible. This is done via multi-dimensional scaling (MDS) as suggested for fMRI by Friston et al., 

1996 (14). The correlation between different regions is calculated and then projected via MDS to 

obtain a distance map that is implied by the correlations. The projection via MDS, provides a 

practical visualization for the connectivity of a large number of nodes, which in our case, refer to the 

121 components extracted from the single-channel EEG.  



 
3 

Results 

Supplementary Figure 1 presents the connectivity maps based on the MDS representation described 

above. The figure contains the 121 components included in the analysis (extracted from the single-

channel EEG). They are marked by numbers on the graphs and corresponding heat-map colors. The 

distances between each component to another, represent the correlation between them as obtained by 

the model. A lower absolute distance between two components in the graph represents higher 

connectivity between those two components.  

The figure presents 3 different groups of patients: positive F-DOPA (left, n=24), Negative F-DOPA 

(middle, n=6), and healthy age-matched controls (right, n=24). A clear component connectivity 

difference between the F-DOPA positive group and the healthy age-matched control group is visible. 

Interestingly, the F-DOPA negative patients’ connectivity map appears closer to the healthy group in 

correlation between the components, but with distinct changes which should be further explored. 

 

Supplementary Figure 1. Group connectivity representation between components extracted from a 

single-channel EEG, showing proximity of the components, in three groups: F-DOPA positive 

patients (left), F-DOPA negative patients (middle), and healthy age-matched subjects (right). The 

numbers represent the component number from the 121 component representation and for better 

visibility the numbers are also colored using the heat color map so that larger channel-numbers are 

red and lower channel-numbers are blue. Note that lower distance represents higher connectivity 

between two components. The axes of the representation have no real meaning and represent the two 

dimensions obtained from the optimization process (the MDS) to embed the total number of 

correlations onto a two-dimensional space. 
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F-DOPA classification Prediction 

Supplementary Figure 1 demonstrated the difference in connectivity between three groups of 

subjects. However, while the group difference may be very evident, an important question is whether 

this difference can be translated into individual differences, which can lead to a classifier of 

individual subjects. To this end, we created a classifier using age-matched individuals that were not 

diagnosed with Parkinson’s disease, and 14 F-DOPA-positive patients. We then tested the classifier 

on 18 subjects, of which 6 were F-DOPA negative and 12 F-DOPA positive. The results are depicted 

in Figure 3 of the manuscript. 

The input to the predictor is the collection of correlations between the different EEG components for 

each individual. These correlations are calculated during the 12-minute cognitive assessment that the 

patients performed. This collection of correlations is of dimension 121x120/2 which is 7260. Thus, to 

avoid overfitting and obtain a smaller predictor, we performed an unsupervised dimensionality 

reduction based on previously collected data. Specifically, using Principal Components Analysis 

(PCA) (16), we created a standard dimensionality reduction that is used in different studies, from 

data of young and senior subjects all performing the same cognitive task (13,17). This corresponds to 

step A in the construction of the classifier (See Supplementary Figure 2). 

Step B trains a set of logistic regression classifiers. The training data as mentioned before included 

14 F-DOPA positive and 24 age-matched F-DOPA negative patients. The regressors have different 

ridge regularizes. We then ensemble average all the regressors (18) to obtain the final predictor. 

Step C applies the obtained set of classifiers on the test data, which included 12 F-DOPA positive 

results and 6 F-DOPA negative results and 30 records from 20 healthy age-matched controls. First 

the data is projected on the previously calculated. dimensionality reduction and then passed by the 

full set of regressors.  

 

Supplementary Figure 2. Scheme of the classification prediction model calculations. 
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