

# Supplementary Material

## Hybrid Modeling of Drop Breakage in Pulsed Sieve Tray Extraction Columns

### Andreas Palmtag<sup>1</sup>, Johannes Rousselli<sup>1</sup>, Henning Gröschl<sup>1</sup>, Andreas Jupke<sup>1\*</sup>

1) Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, D-52074 Aachen, Germany, Tel.: +49 241 80-95490, <u>www.avt.rwth-aachen.de</u>, e-mail: <u>andreas.jupke@avt.rwth-aachen.de</u>

\*

Andreas andreas.jupke@avt.rwth-aachen.de

**1** Supplementary Tables

#### Table 1: Parametrization of Garthe's breakage model.

| Solvent system | $d_{\rm h}$ [mm] | <i>c</i> <sub>1</sub> | <i>C</i> <sub>2</sub> | <i>C</i> <sub>3</sub> | <i>C</i> <sub>4</sub> |
|----------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| TW             | 2                | 1.64                  | -0.18                 | 191                   | 0.55                  |
|                | 4                | 4.8                   | 0.27                  | 1.35                  | 4.31                  |
| TWA            | 2                | 3.81                  | 0.61                  | 1.11                  | 3.47                  |
|                | 4                | 4.75                  | 0.14                  | 1.11                  | 4.35                  |
| BW             | 2                | 1.33                  | 0.03                  | 2.03                  | 0.42                  |
|                | 4                | 2.00                  | -0.07                 | 1.61                  | 0.95                  |
| BWA            | 2                | 2.49                  | 0.27                  | 0.95                  | 1.77                  |
|                | 4                | 2.18                  | -0.33                 | 1.62                  | 1.15                  |

Correspondence: Jupke

#### 2 Error Metric

The root mean-squared error  $e_{\rm rmse}$  is commonly used when assessing the deviation between a number  $n_{\rm u}$  of predicted u and experimental values  $\hat{u}$  (Brockkötter et al., 2020). The  $e_{\rm rmse}$  is averaged over all  $n_{\rm u}$  data sets, thus it might be disproportionally affected by outliers (Dahmen & Reusken, 2022). Nevertheless,  $e_{\rm rmse}$  is a common measure of the residue in machine learning (ML) since it provides the information on the residue in its most simple form, e.g., a small  $e_{\rm rmse}$  indicates a good model, a large  $e_{\rm rmse}$  quantifies the average deviation in the same dimension as the predicted quantity. Commonly, a distinction is made between the training  $e_{\rm rmse}$ , the value minimized during model development, and test  $e_{\rm rmse}$ , a score assessing the prediction of the ML model on data not used during model development (James & Witten, 2013).

In contrast to  $e_{\rm rmse}$ , the coefficient of determination  $e_{\rm R2}$  is a relative measure of the residue.  $e_{\rm R2}$  is common in regression analysis, and it can be interpreted as a comparison between the deviation  $\hat{u} - u$  to the average of the experimental values  $\bar{u}$ . At best, the  $e_{\rm R2}$  is close to 1, whereas, a  $e_{\rm R2} < 0$  indicates that the experimental values are better represented by  $\bar{u}$  than by the predictions u. (Cramer & Kamps, 2017; James & Witten, 2013)

The pull metric  $e_{pull}$  is not commonly used in the extraction research. Therefore, we would like to demonstrate the pull metric based on a simple example. We consider a database consisting of  $n_{\rm u}$  = 100 experimental values  $\hat{u}$  and the according predictions u by a model. The  $n_{\rm u}$  experimental values represent independent experimental data sets and not replicates of one experiment. For each of the  $n_{\rm u}$ entries in the database, e.g., measurement-predictions pairs, the deviation  $\hat{u} - u$  is calculated and standardized by the measurement uncertainty  $\sigma_e$ , yielding the  $e_{pull}$  for each entry (compare with eq. 4-3). The resulting  $n_{\rm u}$  pull values  $e_{\rm pull}$  represent a population which can be visualized in a histogram (see Figure 1). The resulting distribution is characterized by the mean  $\bar{e}_{pull}$  and its standard deviation  $\tilde{e}_{\text{pull}}$ . Considering the numerical values, a good model is characterized by a pull distribution with a mean close to zero ( $\bar{e}_{pull} = 0$ ) and a standard deviation smaller than one ( $\tilde{e}_{pull} < 1$ ). Graphically, a good distribution has its center close  $\bar{e}_{pull} = 0$  and most entries within the  $-1 \le e_{pull} \le 1$  (indicated by dashed lines in Figure 1), indicating that most entries in the database have a deviation that does not exceed the measurement uncertainty. It is important to note that the numerical values for  $\bar{e}_{pull}$  and  $\tilde{e}_{pull}$ might not suffice to assess the accuracy of the prediction, since a multimodal distribution might also result in allegedly good values for  $\bar{e}_{pull}$  and  $\tilde{e}_{pull}$ . Therefore, we also considered the graphical representation of the pull distribution to assess the prediction quality of our models.

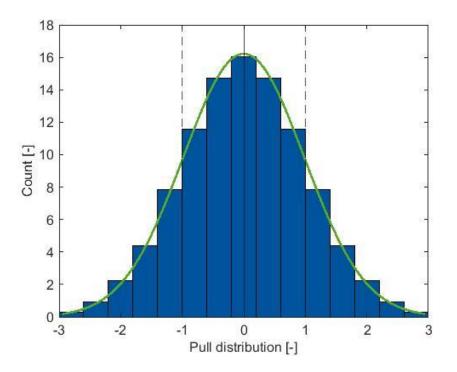


Figure 1: Exemplary Pull distribution.

### **3** Specification of the Soft- and Hardware

All simulations have been conducted on a desktop computer with an Intel Core i7-7700K @4.2GHz processor, which has 4 cores and 8 GB of RAM. On overview over the python and Matlab libraries is given in Table 2.

| Name                                  | Туре                            | Version        |  |
|---------------------------------------|---------------------------------|----------------|--|
| Python                                | Programming Language            | 3.10.8. 64-bit |  |
| numpy                                 | Python library                  | 1.23.4         |  |
| scipy                                 | Python library                  | 1.9.3          |  |
| pandas                                | Python library                  | 1.5.1          |  |
| XlsxWriter                            | Python library                  | 3.0.3          |  |
| joblib                                | Python library                  | 1.2.0          |  |
| scikit-learn                          | Python library                  | 1.1.3          |  |
| openpyxl                              | Python library                  | 3.0.10         |  |
| torch                                 | Python library                  | 1.13.0         |  |
| colorama                              | Python library                  | 0.4.6          |  |
| fluids                                | Python library                  | 1.0.22         |  |
| mlxtend                               | Python library                  | 0.21.0         |  |
| seaborn                               | Python library                  | 0.12.1         |  |
| Matlab <sup>TM</sup>                  | Software                        | R2022b         |  |
| Optimization Toolbox                  | Library (Matlab <sup>TM</sup> ) | 9.4            |  |
| Curve Fitting Toolbox                 | Library (Matlab <sup>TM</sup> ) | 3.8            |  |
| Parallel Computing Toolbox            | Library (Matlab <sup>TM</sup> ) | 7.7            |  |
| Deep Learning Toolbox                 | Library (Matlab <sup>TM</sup> ) | 14.5           |  |
| Statistics & Machine Learning Toolbox | Library (Matlab <sup>TM</sup> ) | 12.4.          |  |

Table 2:Specification of the software used in this work.

#### 4 References

- Brockkötter, J., Cielanga, M., Weber, B., & Jupke, A. (2020). Prediction and Characterization of Flooding in Pulsed Sieve Plate Extraction Columns Using Data-Driven Models. *Industrial & Engineering Chemistry Research*, 59(44), 19726–19735. https://doi.org/10.1021/acs.iecr.0c03282
- Cramer, E., & Kamps, U. (2017). Grundlagen der Wahrscheinlichkeitsrechnung und Statistik: Eine Einführung für Studierende der Informatik, der Ingenieur- und Wirtschaftswissenschaften (4., korrigierte und erweiterte Auflage). Springer-Lehrbuch. Springer Spektrum.
- Dahmen, W., & Reusken, A. (2022). *Numerik für Ingenieure und Naturwissenschaftler* (3. Auflage). *Springer-Lehrbuch*. Springer. https://doi.org/10.1007/978-3-540-76493-9
- James, G., & Witten, D. (2013). #x88; An introduction to statistical learning: with applications in R.