
Supplementary Material

1 PROOF OF THEOREM 1

THEOREM 1 (Risk Decomposition). Let M be a smooth compact manifold in RD, and let data
be drawn from M×{−1, 1} according to some distribution p. There exists a ∆ > 0 depending only
on M such that the following statements hold for any ϵ < ∆. For any score function f satisfying
assumption A,

(i)
Radv(f, ϵ) ≤ Rstd(f) +Rnor

adv(f, ϵ) +Rin
adv(f, 2ϵ) + NNR(f, ϵ).

(ii)If Rnor
adv(f, ϵ) = 0, then

Radv(f, ϵ) ≤ Rstd(f) +Rin
adv(f, 2ϵ)

Proof of i): We first address the existence of the constant ∆ that only depends on M in the theorem
statement.

DEFINITION 1 (Tubular Neighborhood). A tubular neighborhood of a manifold M is a set
N ⊂ RD containing M such that any point z ∈ N has a unique projection π(z) onto M such that
z − π(z) ∈ Nπ(z)M.

By Theorem 11.4 in Bredon (2013), we know that there exists ∆ > 0 such that N := {y ∈ RD :
dist(y,M) < ∆} is a tubular neighborhood of M. This also implies that for any 0 < ϵ < ∆, the
normal line segments of length ϵ at any two points x, x′ ∈ M are disjoint, a fact that will be used
later.

The ∆ guaranteed by Theorem 11.4 is the ∆ referred to in our theorem, and the budget ϵ > 0 is
constrained to be at most ∆.

Next we consider the left hand side, the adversarial risk:

Radv(f, ϵ) := E
(x,y)∼p

1(∃x′ ∈ Bϵ(x) : f(x
′)y ≤ 0)

Denote by E(x, y) the event that ∃x′ ∈ Bϵ(x) : f(x
′)y ≤ 0.

We will write the indicator function above as the sum of indicator functions of four events.
Specifically, define by E1(x, y), E2(x, y), E3(x, y), E4(x, y) the following four events:
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• E1(x, y): f(x)y ≤ 0.
• E2(x, y): f(x)y > 0 and ∃x′ ̸= x ∈ Bϵ(x) such that x′ − x ∈ NxM and f(x′)y ≤ 0.

For the next two cases, let x′ ̸= x ∈ Bϵ(x) be such that x′ − x /∈ NxM and f(x′)y ≤ 0 (if such
an x′ exists). Let x′′ = π(x′) be the unique projection of x′ onto M. Note that x′′ ̸= x. Define:

• E3(x, y): f(x′′)y ≤ 0.
• E4(x, y): f(x′′)y > 0 ⇐⇒ f(x′′)f(x′) ≤ 0.

LEMMA 1.

1(E(x, y)) = 1(E1(x, y)) + 1(E2(x, y)) + 1(E3(x, y)) + 1(E4(x, y))

PROOF. Assume E(x, y) occurs, i.e, ∃x′ ∈ Bϵ(x) : f(x′)y ≤ 0. Either x′ = x satisfies the
condition (which is event E1) or some x′ ̸= x satisfies the condition.

Now we further divide into the case when f(x)y > 0 and x′ − x ∈ NxM (which is event E2), or
f(x)y > 0 and x′ − x /∈ NxM. In the latter case, note that x′′ = π(x′) cannot equal x as otherwise
x′ − x would be in the normal space at x, since the projection map is unique inside the tubular
neighborhood. Thus x′′ is well-defined, and it is easy to see that the last two cases are disjoint and
cover this remaining case. Thus we have shown that if E(x, y) occurs, then one of the four disjoint
events Ei must occur, proving the lemma.

Finally we have the following lemma, which completes the proof of the theorem after combining
with Lemma 1.

LEMMA 2. The following relation holds between the risk and the expectation of the indicator
functions in Lemma 1

1. E
(x,y)∼p

1(E1(x, y)) = Rstd(f)

2. E
(x,y)∼p

1(E2(x, y)) ≤ Rnor
adv(f, ϵ)

3. E
(x,y)∼p

1(E3(x, y)) ≤ Rin
adv(f, 2ϵ)

4. E
(x,y)∼p

1(E4(x, y)) ≤ NNR(f, ϵ)

PROOF. 1) and 2) follow by definitions of standard adversarial risk and normal adversarial risk,
respectively. Consider the setting of E3(x, y): i.e., f(x)y > 0, the adversarial perturbation x′ is not
in the normal direction (so f(x′)y ≤ 0), and f(x′′)y ≤ 0. Observe that by the triangle inequality,
d(x, x′′) ≤ d(x, x′) + d(x′, x′′) ≤ ϵ+ ϵ = 2ϵ, simply because a) x′ is within the ϵ-ball of x, and b)
x′′ is closer to x′ than x.
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This means that there is a point x′′ ∈ Bin
2ϵ (x) such that f(x′′)y ≤ 0. The expectation over a

random (x, y) ∼ p of this event is clearly at most Rin
adv(f, 2ϵ) (the inequality need not be tight

because x may have adversarial perturbation within 2ϵ and also satisfy some other events like E1).

Lastly, by the definition of the NNR, we see that A(x, y) occurs when E1(x, y) or E2(x, y) do
not. Also C(x, y) implies that the event E3(x, y) does not occur. We are now in the situation where
x′′ is within 2ϵ of x, f(x′)y ≤ 0, and f(x′′)y > 0. But this implies that f(x′′)f(x′) ≤ 0, and
since x′ ∈ Bnor

ϵ (x′′), it implies that B(x, y) occurs. Thus all of A(x, y), B(x, y) and C(x, y) occur,
which is the definition of NNR.

Proof of ii)

If Rnor
adv(f, ϵ) = 0, we claim that NNR(f, ϵ) = 0. Setting these two terms to zero in i) proves ii).

Note that although Rnor
adv(f, ϵ) = 0, it does not imply that there are no normal adversarial

perturbations for any x— it just means that the measure of such x with normal adversarial
perturbation is zero.

Also note that Rnor
adv(f, ϵ) = 0 does not exclude A(x, y) or C(x, y) from occurring (in fact A

occurs for almost all x). Thus the proof will focus on the measure of points where B(x, y) can occur.
We will prove the following lemma, which will complete the proof of the theorem.

LEMMA 3. Let (x, y) be such that B(x, y) occurs, i.e., there exist x′ ∈ Bϵ(x) and x′′ = π(x)
such that f(x′)y ≤ 0, f(x′′)y > 0 and d(x, x′′) ≤ 2ϵ. Then C(x, y) cannot occur, i.e., there exists
a point w ∈ Bin

2ϵ (x) such that f(w)y ≤ 0. Consequently, NNR(f, ϵ) = 0.

PROOF. We first claim that if B(x, y) occurs, it must be the case that f(x′′) = 0. Assuming
this, if f(x′′) = 0, then by Assumption A we know there exists an s ∈ Bϵ(x

′′) ∩B2ϵ(x) such that
f(s)y ≤ 0, which imply that C(x, y) cannot occur. This will complete the proof of the lemma.

To prove that f(x′′) = 0, consider what happens if f(x′′) ̸= 0. Assume first that f(x′) ̸= 0,
and note that f(x′)f(x′′) ≤ 0. By continuity of f , there exist open neighborhoods U ∋ x′′

and V ∋ x′ such that f has the same sign on all of U and the same sign on all of V , i.e.,
sign(f |U) = sign(f(x′′)) and sign(f |V ) = sign(f(x′)).

Consider the normal bundle on U defined as the set U ′ = {y ∈ M∆ : π(y) ∈ U}. In other words,
U ′ is the union of the normal line segments passing through points in U (here M∆ denotes the
tubular neighborhood of M). Note that U ′ is an open set.

Define W ′ = U ′∩V , and W = π(W ′). W ⊂ M is an open set, but for every w ∈ W , there exists
a point w′ ∈ W ′ ∩Bnor

ϵ (w) such that f(w′)f(w) ≤ 0. Therefore there exists anormal adversarial
perturbation for every point in W . Since the measure of W is not zero, this contradicts the fact that
Rnor
adv(f, ϵ) = 0.

The proof is completed by observing that in the remaining case when f(x′′) ̸= 0 but f(x′) = 0,
there must exist (by assumption A) a point w near x′ such that f(w) ̸= 0 and f(w)y < 0. This lands
us in the previous case, which we showed contradicts the hypothesis that Rnor

adv(f, ϵ) = 0.
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Remark: In Corollary 1, µ(Znor(f, ϵ) ∩ B2ϵ(Z
nor(f, ϵ)) is the NNR under deterministic case.

Therefore, Corollary 1 follows directly from the proof of Theorem 1.

2 ADDITIONAL EXPERIMENTS

In the main paper, we leave some experimental results to discuss in this supplementary materials. In
the following section, we compare different ways of generating in-manifold attack data.

2.1 In-Manifold Attack Algorithm

To estimate the in-manifold adversarial risk, we have tested two potential algorithms for generating
in-manifold adversarial examples. We present our observations on these two methods. Our empirical
study in the paper leverage one of the two methods presented below, which generates a more
powerful in-manifold adversarial example.

One way to generate the adversarial samples is by brutal force. We use the grid search method to
search the Bin

ϵ (x) region and find the maximum loss point in that region. We treat the maximum
loss point as the in-manifold adversarial data. We call this approach the grid search method. Another
approach we name as the projected method. We set the step size of the grid search proportional to
the perturbation budget ϵ. In general, we search 100 points in 1D cases and 400 points in the 2D
manifold. In the projected method, we first use a general adversarial attack algorithm to generate
adversarial data in ambient space. Then we project the generated adversarial example back to the
manifold and return the results as our in-manifold adversarial data. In the following experiment, we
use PGD as our generator of adversarial data in ambient space. Both methods will find in-manifold
data that is adversarial to the given model. The rest of the experiment settings follow Section 3 in
the main paper.

In Figure S1 we plot the after-attack accuracy of these two in-manifold attack methods. The
experiments follow the same setting as the one we described in the main paper. We could observe that
the grid search is slightly stronger in the 3D single boundary case and equivalent to the projection
method in the rest of the cases. In the graph, the after-attack accuracy of the grid search method
matches with the projection methods in the 2D case. And in the 3D case, when the ϵ is larger than
0.5, then the grid search method achieves smaller after attack accuracy. This is due to the projection
method searching the adversarial example in a smaller in-manifold ball. In other words, it hasn’t
fully explored the ϵ ball around the original data point. Therefore we could observe this small
gap between these two methods. In the paper, we rely on the grid search method for generating
in-manifold adversarial examples.

2.2 Real-World Data under L∞ norm

In this section, we additionally outline various adversarial risks within the context of L∞
norm attacks in Table S1. Our theoretical findings remain consistent when applied to the
FASHIONMNIST dataset. However, these findings did not hold up for the other two datasets.
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a) 2D Single
decision boundary

b) 2D Double
decision boundary

c) 3D Single
decision boundary

d) 3D Double
decision boundary

Figure S1: We compare the grid search method and projection method to generate in-manifold
attack data. The first row is after attack accuracy on the 2D data set. The blue line is the accuracy of
the projection approach. Orange is for the grid search method. The ϵ range is smaller than the range
we choose in the discussion of the main paper. This is because ϵ-budget is larger than 0.05. The
after-attack accuracy remains zero. The lower row is after attack accuracy on two different 3D data
sets.

Table S1. Listing standard risk and different adversarial attack risks under L∞ norm. Each risk is plotted in separate columns, and in the last column,
we sum up the standard risk, in-manifold adversarial risk, and normal adversarial risk for comparison with the general adversarial risk.

Dataset L∞ Attack Risk Standard Risk In-Manifold
Adversarial Risk

Normal Adversarial
Risk

Sum of RHS

MNIST 0.9997 0.0076 0.0262 0.5654 0.5992
FASHIONMNIST 0.9862 0.0522 0.083 0.8633 0.9985
SVHN 0.98 0.0326 0.0988 0.1843 0.3157

This leads us to propose that the decision boundary within the FASHIONMNIST dataset closely
aligns with the data manifold, making it susceptible to attacks from both directions.

2.3 Manifold Reconstruction

To verify the accuracy of our approximation, we plotted the difference between the reconstructed
images and the original images under L2 and L∞ norms in Figure S2. The horizontal axes represent
the distance between input and reconstructed images, while the vertical axes represent the number
of images falling within a specific distance from the original images.

From the images in Figure S2, we observe that for gray-scale images the majority of the
reconstructed examples are very close to the original images. Specifically, under L2 norm
with a perturbation budget of 1.5, nearly 95% of the reconstructed images for MNIST and
FASHIONMNIST datasets fall within the 1.5 distance away from the original images, demonstrating
a accurate approximation of the underlying data manifold.
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Similarly, under L∞ norm, a significant percentage of the reconstructed images also remain within
the specified perturbation budget. However, for the SVHN dataset, most of the images exceed the
perturbation budget, resulting in visible differences between the reconstructed and original images.

Furthermore, upon comparing the reconstructed images to the original ones, we noticed that the
reconstructed SVHN images appear blurrier than their corresponding original images. This is a
common issue with Autoencoders, where certain fine details may not be accurately captured during
the reconstruction process.

6



0.2 0.4 0.6 0.8 1.0 1.2 1.4
L2 norm

0

20

40

60

80

100

N
um

be
r 
of
 D
at
a

L2 perturbation budget

0.05 0.10 0.15 0.20 0.25 0.30
L∞ norm

L∞ perturbation budget

MNIST

0.5 1.0 1.5 2.0 2.5 3.0
L2 norm

0

20

40

60

80

100

120

140

160

N
um

be
r 
of
 D
at
a

L2 perturbation budget

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
L∞ norm

L∞ perturbation budget

FASHIONMNIST

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
L2 norm

0

20

40

60

80

100

120

140

160

N
um

be
r 
of
 D
at
a

L2 perturbation budget

0.05 0.10 0.15 0.20 0.25 0.30 0.35
L∞ norm

L∞ perturbation budget

SVHN

Figure S2: In this plot, we present histograms for the differences between input images and their
reconstructed counterparts, using both the L2 and L∞ norms. The figure reveals that the invisibility
of differences in MNIST and FASHIONMNIST datasets is due to the majority of the differences
falling within the L2 or L∞ budget for gray-scale images. Conversely, in the case of SVHN, only
1% of the differences remain under the perturbation budget, making them easily noticeable.
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