Phage	Total number	of droplets	Number	of	droplet	data	Number of data used to create
concentration	assessed		excluded				figure
(PFU/mL)							
2.3×10^{8}	20082		585				19497
2.3×10^{7}	20048		6522				13526
2.3×10^{6}	20082		584				19498
2.3×10^{5}	20045		810				19235
2.3×10^4	20104		1117				18987
0	20177		1116				19061

Table S1. Number of droplets assessed and plotted to create Figure 2.

Table S2. Number of droplets assessed and plotted to create Figure 3a.

Time Point	Total number	of droplets	Number of	droplet	data	Number of data used to create
(h)	assessed	-	excluded	-		figure
0	40044		1528			38516
1	40058		1832			38226
3	40140		2291			37849
5	40089		3065			37024
7	40070		4073			35997
9	40177		2549			37257
24	40136		2466			37670

Table S3. Number of droplets assessed and plotted to create Figure 3b.

Time Point	Total number	of droplets	Number of	droplet data	Number of data used to create
(h)	assessed		excluded		figure
0	40051		2729		37124
1	40123		4082		36041
3	40132		5489		34643
5	40082		2574		37508
7	40090		2435		37655
9	40017		2389		37628
24	40053		2689		37364

Equation S1. Calculation of the λ_{phg} using the titer of the original phage solution.

Titer of original phage solution : X PFU/mL Average volume of individual droplets upon generation, calculated from droplet diameters : Y pL Average number of phage particles in a droplet (λ_{phg}):

$$\lambda_{phg} = \frac{X \left(PFU/10^9 pL \right)}{Y \left(pL \right)}$$

Equation S2. Calculation of particle concentration (λ) using Poisson Distribution.

Poisson distribution formula:

$$P_{(m)} = \frac{\lambda^m e^{-\lambda}}{m!} \tag{1}$$

 $P_{(m)}$: Probability of a droplet having *m* particles

 λ : average number of phage particles in a droplet

Because droplets without phage (m = 0) are non-fluorescent, m = 0 and the percentage of non-fluorescent droplets can be used to gauge the initial λ .

$$P_{(0)} = \frac{\lambda^0 e^{-\lambda}}{0!}$$
$$= e^{-\lambda}$$
(2)

$$lnP_{(0)} = ln e^{-\lambda}$$

= $-\lambda$ (3)

$$\lambda = -lnP_{(0)} \tag{4}$$

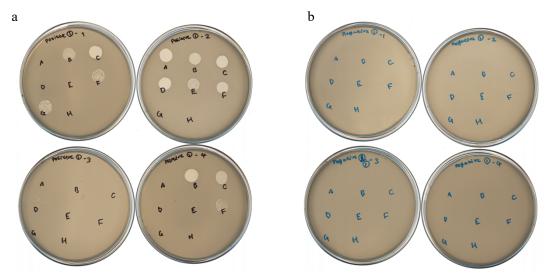


Figure S1. Plates after spot assay of culture medium derived from scale-up cultivation of isolated single droplets. Droplet samples containing T2 phage, *E. coli* and YOYO-1 were generated and incubated. After 5 h of incubation, droplets with high fluorescence intensities (S1a) and low fluorescence intensities (S1b) were isolated into 96-well plates, where steps for droplet rupturing and scale-up cultivation were performed. These culture media were scaled-up from individual droplets and used for spot assays. The letters in the photos depict the rows (A–H) of the 96-well plate from which the spot assays were conducted, and the numbers written on at the top depict the 96-well plate name (Positive (1), Negative (1)) and columns (1–4). Numerous spots are observed in S1a, while no spots were observed in any of the plates shown in figure S1b, where spot assays using culture media scaled up from droplets with low fluorescence intensities were performed.

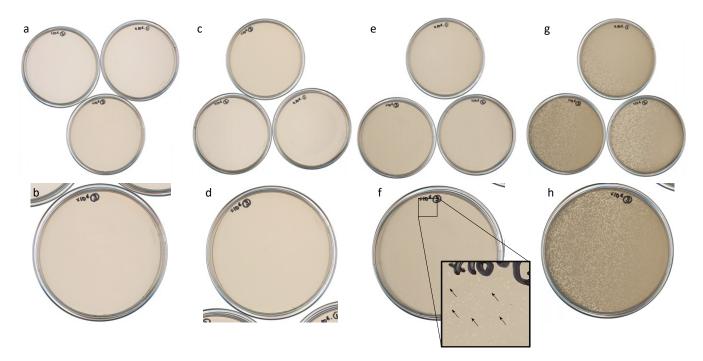


Figure S2. Surveillance of plaques over time.

The T2 phage and *E. coli* were mixed into a 802 soft agar solution to produce plaques. The plates onto which 3 mL each of soft agar was poured over normal 802 agar solution (n = 3) were incubated at 30 °C, removed and photographed after approximately 1 (a, b), 3 (c, d), 5 (e, f), and 24 (g, h) h of plating. A slight darkening of the overall color of the plates was observed as the incubation time increased, due to host cell growth. Plaques started to appear after 5 h of incubation (indicated with arrows) and continued to become clearer with incubation time.