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1 APPENDIX

1.1 Kac’s Chessboard and Changing Switches

The Kac model, expressed in the ‘chessboard’ format is:

KK(x, t) =
∑
R

N(R)(mϵ)R(1−mϵ)N−R (S1)

where N = t/ϵ is the total number of steps in the path from the origin to the position x at time t. The
coefficients N(R) are the same for the FCM and the Kac model. The reason for the weight (1−mϵ)N−R

in the sum is to compensate for the fact that in terms of ‘Persist’ and ‘Switch’, the term (P + ϵmσx) codes
for a branching process that grows over time. As an operator on a two component column vector, for any

positive initial condition, say x0 =

(
1
0

)
, powers (P + ϵmσx)

n ultimately count the number of paths.

Operating on the initial condition will increase the norm of the column vector. To avoid the increase and
place the model in the domain of probability, the coefficient of P , taken to be (1 − ϵm) normalizes the
process. So in terms of the binary expansion a path is actually described by:

(P ⊻ S)n (S2)
where ⊻ is an exclusive OR. A particle either persists or switches at each step, but does not do both. That is,
for a single particle

(P ∧ S) = ⊥ (S3)
and a single path cannot both Persist and Switch at a single step. An ensemble of paths or a branching
process can sensibly do both but in the Kac model we choose the former and normalize the process
appropriately so that the end result is a probabilistic model.

If the switch is changed to SM = −iσy we can see that this takes us out of a probabilistic interpretation
immediately. If we sequentially list powers of the switch acting on x0 we get

{x0, SMx0 . . . S
4
Mx0 . . . } = {

(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)
,

(
1
0

)
. . .} (S4)

This makes little direct sense when thinking probabilistically of a Kac path. On the other hand the KMM
model is coding for special pairs of paths; namely Fraternal twins. If we use the right twin to code for the
pair we notice that the right twin has SM for the switch because it allows for the switch to change photon
path direction at the outside corners, but not change direction at inside corners. We do not easily see the
consequences of this in the above sequence because the other path is not present to exchange at switches.
Our initial condition obscures what is really happening . If we put in a more suitable initial condition, say

x1 =

(
1
1

)
that starts with two paths, positively oriented to the right and left respectively, we get:

{x1, SMx1 . . . S
4
Mx1 . . .} = {

(
1
1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
1
−1

)
,

(
1
1

)
. . .} (S5)

We can see that this is indeed a rotation (First, second, third and fourth quadrant null lines respectively.)
Rotations may be made ‘small’ even though reflections cannot be. So in this case:

(P ∧ SM ) = ⊥ (S6)

That is, in the sum over paths we can simultaneously have Persist and Switch. A way to see this is to write
SM to look like a continuous function of t, for example:1

1 Here we are choosing m = π
2

so the switching conveniently occurs at integers.
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SM = Sq(⌊t⌋) where Sq(t) =

(
cos (π2 t) sin (π2 t)
− sin (π2 t) cos (π2 t)

)
. (S7)

Sq is a smooth function of t but Sq(⌊t⌋) gives powers of the switch.

Sq(0) =

(
1 0
0 1

)
, Sq(1) =

(
0 1
−1 0

)
, Sq(2) =

(
−1 0
0 −1

)
. . . (S8)

While (P + ϵmSK)n required a probabilistic normalization for P to make sense because P and SK
were mutually exclusive on an actual particle path, here (P + ϵmSM )n, for small epsilon can be replaced
by Sq(ϵ) without need of the normalization term because (P + ϵmSq(ϵ)) makes sense in terms of (P ∧ S)
as a small rotation. Ultimately, causal areas may be created by rotating their opposing boundaries into one
another, rather than ‘growing’ them from the events.

A contact can be made with classical statistical mechanics in that, for example, the character of solutions
of both the Kac and KMM models changes as the scale of observation approaches the mean free path
represented by the characteristic scale m. Once you get close to this scale you start to escape the time
averaging of observations on coarser scales and begin to ‘see’ the emergence of Newton’s first law in the
context of space-time or spacetime respectively.

In the Kac model Newton’s first law is reflected in the unbroken path of a particle with velocity ±1 on
fine scales. In the KMM the law of inertia is reflected in rectangular causal areas between Events, with
Events lying on a single timelike ray. This is manifest as a rotation because the boundaries of the rectangles
have opposite orientation (See the colourings of area boundaries in fig:KFSwitch).

On very large scales the Kac model is a thermodynamic clock that measures time through an exponential
decay to equilibrium eqn:decay.

On very large scales the KMM model would depend on what can be detected. If mass and hence
momentum cannot be detected we could only expect that the reaction to boosts would respond to spacetime,
but the marking by Events and the resulting aspects of wave propagation would be absent. The clock aspect
of a particle would be lost due to the undetectability of the Events that mark the worldline. If p and m
can be detected the result would more closely resemble a stopwatch and for small p we would expect the
propagator to look like the non-relativistic version rather than a thermodynamic clock, as the propagator
measures time modulo a fundamental wavelength.
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