Multi- and Many-Objective Optimization: Present and Future in *de novo* Drug Design – Supplementary Material –

Jaqueline S. Angelo, Isabella A. Guedes, Helio J. C. Barbosa and Laurent E. Dardenne

1 Pseudocodes of many-objective EAs

This section provides brief pseudocodes for seven many-objective EAs cited in the paper, which are: NNIA [Liu et al., 2019], Two-Arch [Praditwong and Yao, 2006], NSGA-III [Deb and Jain, 2014], MOEA/DD [Li et al., 2015], GAPF [Rocha et al., 2017], MaOEADRA [Zou et al., 2021], and IDEA [Xia et al., 2023].

Algorithm 1: Pseudocode of the NNIA Algorithm [Liu et al., 2019].

- 1 Input: *Gmax* (maximum number of generations);
- **2** nD (maximum size of Dominant Population);
- **3** nA (maximum size of Active Population);
- 4 nC (size of Clone Population);
- **5 Output**: D_{Gmax+1} (final approximate Pareto-optimal set);
- 6 Step1: Initialization: Generate an initial antibody population B_0 with the size n_D . Create the initial $D_0 = \emptyset$, $A_0 = \emptyset$, and $C_0 = \emptyset$. Set t = 0.;
- 7 Step2: Update Dominant Population: Identify dominant antibodies in B_t ; Copy all the dominant antibodies to form the temporary dominant population (denoted by DT_{t+1}); If the size of DT_{t+1} is not greater than n_D , let $D_{t+1} = DT_{t+1}$. Otherwise, calculate the crowding-distance values of all individuals in DT_{t+1} , sort them in descending order of crowding-distance, choose the first n_D individuals to form D_{t+1} .;
- s Step3: Termination: If $t \ge Gmax$ is satisfied, export D_{t+1} as the output of the algorithm, Stop; Otherwise, t = t + 1.;
- 9 Step4: Nondominated Neighbor-based Selection: If the size of D_t is not greater than n_A , let $A_t = D_t$. Otherwise, calculate the crowding-distance values of all individuals in D_t , sort them in descending order of crowding-distance, choose the first n_A individuals to form A_t .;
- 10 Step5: Proportional Cloning: Get the clone population C_t by applying the proportional cloning to A_t .;
- 11 Step 6: Recombination and Hypermutation: Perform recombination and hypermutation on C_t and set C'_t to the resulting population.;
- 12 Step 7: Get the antibody population B_t by combining the C'_t and D_t ; go to Step 2.;

Algorithm 2: Pseudocode of the Two-Arch Algorithm [Praditwong and Yao, 2006].

- 1 Initialize the population;
- 2 Initialize archives to the empty set;
- **3** Evaluate initial population;
- 4 Set t = 0;
- 5 repeat
- Collect non-dominated individuals to archives; 6
- Select parents from archives; $\mathbf{7}$
- Apply genetic operators to generate a new population; 8
- Evaluate the new population; 9
- 10 t = t + 1;

11 until $t == MAX_GENERATION;$

Algorithm 3: Pseudocode of NSGA-III Algorithm [Deb and Jain, 2014]

- 1 Input: H structured reference points Z^s or supplied aspiration points Z^a , parent population P_t ; 2 Output: P_{t+1} ;
- **3** $S_t = \emptyset, i = 1;$
- 4 Q_t = Recombination+Mutation(P_t);
- 5 $R_t = P_t \cup Q_t;$
- 6 (F1, F2, ...) =Non-dominated-sort (R_t) ;
- 7 repeat

 $S_t = S_t \cup F_i$ and i = i + 1; 8

- 9 until $|S_t| \geq N$;
- 10 Last front to be included: $F_l = F_i$;
- 11 if $|S_t| = N$ then
- $P_{t+1} = S_t$, break 12

13 else

- $P_{t+1} = \bigcup_{j=1}^{l-1} F_j;$ $\mathbf{14}$
- Points to be chosen from $F_l: K = N |P_{t+1}|$; $\mathbf{15}$
- Normalize objectives and create reference set Z^r : Normalize $(f^n, S_t, Z^r, Z^s, Z^a)$; 16
- Associate each member s of S_t with a reference point: $[\pi(s), d(s)] = Associate(S_t, Z^r) \%$ 17 $\pi(s)$: closest reference point, d: distance between s and $\pi(s)$;
- Compute niche count of reference point $j \in Z^r : \rho_j = \sum_{S \in S_t/F_l} ((\pi(s) = j) ? 1 : 0);$ 18
- Choose K members one at a time from F_l to construct 19
 - P_{t+1} : Niching(K, $\rho_j, \pi, d, Z^r, F_l, P_{t+1})$;

Algorithm 4: Pseudocode of MOEA/DD Algorithm [Li et al., 2015]

```
1 Output: population P;
2 [P, W, E] \leftarrow INITIALIZATION();
                                                 /* P is the parent population, W is the
   weight vector set and E is the neighborhood index set */
3 while termination criterion is not fulfilled do
     for i \leftarrow 1 to N do
\mathbf{4}
         P \leftarrow MATING\_SELECTION(E(i), P);
\mathbf{5}
         S \leftarrow VARIATION(\overline{P});
6
         foreach x^c \in S do
7
            P \leftarrow UPDATE\_POPULATION(P, x^c);
                                                                    /* x^c is an offspring */
9 Return: P
```

Algorithm 5: Pseudocode of GAPF Algorithm [Rocha et al., 2017].

- 1 Generate initial population;
- 2 Evaluate the population (using the GAPF energy potentials);
- **3 for** t = 0 to NEvalsMax do
- 4 Parental selection tournament;
- 5 Apply genetic operator on parents;
- **6** Evaluate offspring (using the GAPF energy potentials);
- 7 Parental replacement with phenotypic crowding;

Algorithm 6: Pseudocode of MaOEADRA Algorithm [Zou et al., 2021].

1 Input: Population size N, objectives m, the termination criterion;

2 Output: The final population P;

3 $W \leftarrow \text{UniformReferencePoint}(N);$ 4 $P_0 \leftarrow \text{RandomInitialize}(N);$ 5 $A \leftarrow P_0, V \leftarrow W;$ 6 $R \leftarrow Zeros_{N \times 1};$ 7 $Gen \leftarrow 1;$ s while the termination criterion is not satisfied do $O \leftarrow Variation(MatingSelection(P_t, N));$ 9 $Qt \leftarrow P_t \cup O;$ 10 $[A, V, R] \leftarrow \text{UpdateRefPoint}(A \cup O, W, V, R, Gen);$ 11 $P_{t+1} =$ EnvironmentalSelection $(Q_t, V, A);$ 12 $Gen \leftarrow Gen + 1;$ 13

14 Return P;

Algorithm 7: Pseudocode of IDEA Algorithm [Xia et al., 2023].

1 Input: Population size N, objectives M, the termination criterion;

2 Output: Final population;

3 Generate uniformly distributed reference points RP and an initial population P_0 ;

- ${\bf 4}$ while the termination criterion is not satisfied ${\bf do}$
- 5 Calculate $I_{\infty}^{r}(p_{x}|p_{y})$ between any two solutions and save the result to matrix I_{M} ;
- **6** Find neighbor solutions into S_n by using I_M ;
- 7 Crossover and mutation to generate offspring Q_t by using S_n ;
- 8 $P_{(t+1)} = \text{EnvironmentalSelection}(P_t \cup Q_t, I_M, RP);$
- **9 if** the problem is irregular then
- 10 $RP = \text{LearningPopulation}(P_{(t+1)}, N);$

```
11 t = t + 1;
```

```
12 Return P_t
```

References

- [Deb and Jain, 2014] Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. *IEEE Transactions on Evolutionary Computation*, 18(4):577–601.
- [Li et al., 2015] Li, K., Deb, K., Zhang, Q., and Kwong, S. (2015). An evolutionary many-objective optimization algorithm based on dominance and decomposition. *IEEE Transactions on Evolutionary Computation*, 19(5):694–716.
- [Liu et al., 2019] Liu, J., Wang, Y., Wang, X., Guo, S., and Sui, X. (2019). A new dominance method based on expanding dominated area for many-objective optimization. *International Journal of*

Pattern Recognition and Artificial Intelligence, 33(03):1959008.

- [Praditwong and Yao, 2006] Praditwong, K. and Yao, X. (2006). A new multi-objective evolutionary optimisation algorithm: The two-archive algorithm. In 2006 International Conference on Computational Intelligence and Security, volume 1, pages 286–291.
- [Rocha et al., 2017] Rocha, G. K., Angelo, J. S., Santos, K. B., Custódio, F. L., Dardenne, L. E., and Barbosa, H. J. (2017). Using an aggregation tree to arrange energy function terms for protein structure prediction. In 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pages 1–7.
- [Xia et al., 2023] Xia, Y., Huang, J., Li, X., Liu, Y., Zheng, J., and Zou, J. (2023). A many-objective evolutionary algorithm based on indicator and decomposition. *Mathematics*, 11(2):413.
- [Zou et al., 2021] Zou, J., Zhang, Z., Zheng, J., and Yang, S. (2021). A many-objective evolutionary algorithm based on dominance and decomposition with reference point adaptation. *Knowledge-Based Systems*, 231:107392.