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1 Pseudocodes of many-objective EAs

This section provides brief pseudocodes for seven many-objective EAs cited in the paper, which
are: NNIA [Liu et al., 2019], Two-Arch [Praditwong and Yao, 2006], NSGA-III [Deb and Jain, 2014],
MOEA/DD [Li et al., 2015], GAPF [Rocha et al., 2017], MaOEADRA [Zou et al., 2021], and IDEA
[Xia et al., 2023].

Algorithm 1: Pseudocode of the NNIA Algorithm [Liu et al., 2019].

1 Input: Gmax (maximum number of generations);
2 nD (maximum size of Dominant Population);
3 nA (maximum size of Active Population);
4 nC (size of Clone Population);
5 Output: DGmax+1 (final approximate Pareto-optimal set);

6 Step1: Initialization: Generate an initial antibody population B0 with the size nD. Create
the initial D0 = ∅, A0 = ∅, and C0 = ∅. Set t = 0.;

7 Step2: Update Dominant Population: Identify dominant antibodies in Bt; Copy all the
dominant antibodies to form the temporary dominant population (denoted by DTt+1); If the
size of DTt+1 is not greater than nD, let Dt+1 = DTt+1. Otherwise, calculate the
crowding-distance values of all individuals in DTt+1, sort them in descending order of
crowding-distance, choose the first nD individuals to form Dt+1.;

8 Step3: Termination: If t ≥ Gmax is satisfied, export Dt+1 as the output of the algorithm,
Stop; Otherwise, t = t+ 1.;

9 Step4: Nondominated Neighbor-based Selection: If the size of Dt is not greater than nA,
let At = Dt. Otherwise, calculate the crowding-distance values of all individuals in Dt, sort
them in descending order of crowding-distance, choose the first nA individuals to form At.;

10 Step5: Proportional Cloning: Get the clone population Ct by applying the proportional
cloning to At.;

11 Step6: Recombination and Hypermutation: Perform recombination and hypermutation
on Ct and set C ′

t to the resulting population.;

12 Step7: Get the antibody population Bt by combining the C ′
t and Dt; go to Step2.;
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Algorithm 2: Pseudocode of the Two-Arch Algorithm [Praditwong and Yao, 2006].

1 Initialize the population;
2 Initialize archives to the empty set;
3 Evaluate initial population;
4 Set t = 0;
5 repeat
6 Collect non-dominated individuals to archives;
7 Select parents from archives;
8 Apply genetic operators to generate a new population;
9 Evaluate the new population;

10 t = t+ 1;

11 until t == MAX GENERATION ;

Algorithm 3: Pseudocode of NSGA-III Algorithm [Deb and Jain, 2014].

1 Input: H structured reference points Zs or supplied aspiration points Za, parent population
Pt;

2 Output: Pt+1;

3 St = ∅, i = 1;
4 Qt = Recombination+Mutation(Pt);
5 Rt = Pt ∪Qt;
6 (F1, F2, ...) = Non-dominated-sort(Rt);
7 repeat
8 St = St ∪ Fi and i = i+ 1;
9 until |St| ≥ N ;

10 Last front to be included: Fl = Fi;
11 if |St| = N then
12 Pt+1 = St, break
13 else

14 Pt+1 = ∪l−1
j=1Fj ;

15 Points to be chosen from Fl : K = N − |Pt+1|;
16 Normalize objectives and create reference set Zr: Normalize(fn, St, Z

r, Zs, Za);
17 Associate each member s of St with a reference point: [π(s), d(s)] = Associate(St, Z

r) %
π(s): closest reference point, d: distance between s and π(s);

18 Compute niche count of reference point j ∈ Zr : ρj =
∑

S∈St/Fl
((π(s) = j) ? 1 : 0);

19 Choose K members one at a time from Fl to construct
Pt+1 : Niching(K, ρj , π, d, Z

r, Fl, Pt+1);

Algorithm 4: Pseudocode of MOEA/DD Algorithm [Li et al., 2015].

1 Output: population P ;
2 [P,W,E]← INITIALIZATION() ; /* P is the parent population, W is the

weight vector set and E is the neighborhood index set */

3 while termination criterion is not fulfilled do
4 for i← 1 to N do
5 P ←MATING SELECTION(E(i), P );

6 S ← V ARIATION(P );
7 foreach xc ∈ S do
8 P ← UPDATE POPULATION(P, xc) ; /* xc is an offspring */

9 Return: P
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Algorithm 5: Pseudocode of GAPF Algorithm [Rocha et al., 2017].

1 Generate initial population;
2 Evaluate the population (using the GAPF energy potentials);
3 for t = 0 to NEvalsMax do
4 Parental selection tournament;
5 Apply genetic operator on parents;
6 Evaluate offspring (using the GAPF energy potentials);
7 Parental replacement with phenotypic crowding;

Algorithm 6: Pseudocode of MaOEADRA Algorithm [Zou et al., 2021].

1 Input: Population size N , objectives m, the termination criterion;
2 Output: The final population P ;

3 W ← UniformReferencePoint(N);
4 P0 ← RandomInitialize(N);
5 A← P0, V ←W ;
6 R← ZerosN×1;
7 Gen← 1;
8 while the termination criterion is not satisfied do
9 O ← V ariation(MatingSelection(Pt, N));

10 Qt← Pt ∪O;
11 [A, V,R]← UpdateRefPoint(A ∪O,W, V,R,Gen);
12 Pt+1 = EnvironmentalSelection(Qt, V, A);
13 Gen← Gen+ 1;

14 Return P ;

Algorithm 7: Pseudocode of IDEA Algorithm [Xia et al., 2023].

1 Input: Population size N , objectives M , the termination criterion;
2 Output: Final population;

3 Generate uniformly distributed reference points RP and an initial population P0;
4 while the termination criterion is not satisfied do
5 Calculate Ir∞(px|py) between any two solutions and save the result to matrix IM ;
6 Find neighbor solutions into Sn by using IM ;
7 Crossover and mutation to generate offspring Qt by using Sn;
8 P(t+1) = EnvironmentalSelection(Pt ∪Qt, IM , RP );
9 if the problem is irregular then

10 RP = LearningPopulation(P(t+1), N);

11 t = t+ 1;

12 Return Pt
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