Supplementary Material

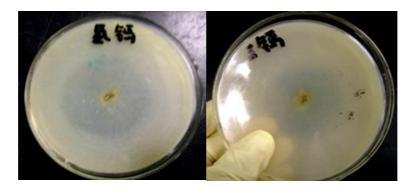
Trichoderma reesei FS10-C enhances phytoremediation by Sedum plumbizincicola for Cd-contaminated soils and associated soil microbial activities

Teng Ying^{a*}, Luo Yang^a, Ma Wenting^a, Zhu Lingjia^a, Ren Wenjie^a, Luo Yongming^{a,b}, Li Zhengao^a

a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

b Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

*Correspondence:


Ying Teng, yteng@issas. ac.cn

Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road No. 71, Nanjing, Jiangsu Province, 210008, China

This file includes:

Supplementary Figures S1 and S2

Supplementary Figures

(a) The plate with $CaHPO_4$ (b) The plate with $Ca_3(PO_4)_2$ Fig. S1 Inorganic phosphate solubilization ability of *T. reesei* FS10-C. The circles of

dissolved P were 54.2 ± 0.3 mm (a) and 45.2 ± 0.2 mm (b).

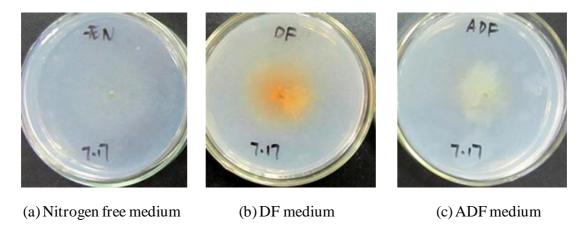


Fig. S2 ACC deaminase production ability of *T. reesei* FS10-C. The DF medium (pH 7.5) was composed of 4.0 g L⁻¹ KH₂PO₄, 6.0 g L⁻¹ Na₂HPO₄, 0.2 g L⁻¹ MgSO₄·7H₂O, 2.0 g L⁻¹ glucose, 2.0 g L⁻¹ gluconic acid, 2.0 g L⁻¹ citric acid, 2.0 g L⁻¹ (NH₄)₂SO₄, 0.1 mL FeSO₄·7H₂O, 0.1 mL microelement solution and 18 g L⁻¹ agar. The ADF medium was prepared using 3.0 mmol L⁻¹ ACC to replace 2.0 g L⁻¹ (NH₄)₂SO₄. The DF medium without the addition of (NH₄₂)SO₄ was used as the nitrogen free medium.